Κυριακή 29 Δεκεμβρίου 2024

ETC

X(68177) = EULER LINE INTERCEPT OF X(76)X(3793)

Barycentrics    -6 a^4+a^2 (b^2+c^2)+b^4-6 b^2 c^2+c^4 : :

As a point on the Euler line, X(68177) has Shinagawa coefficients: {2 (E+F)^2-3 S^2,7 S^2}

See Juan José Isach Mayo, euclid 8245.

X(68177) lies on these lines: {2, 3}, {32, 63923}, {76, 3793}, {698, 5052}, {736, 15480}, {1506, 32459}, {1975, 18907}, {3053, 64093}, {3589, 7756}, {3734, 7767}, {3788, 53418}, {3933, 7737}, {3972, 5305}, {5034, 42421}, {5215, 12815}, {5475, 59545}, {5503, 60146}, {5943, 58211}, {6337, 15484}, {6390, 7745}, {6392, 21309}, {6645, 15172}, {6680, 53419}, {7747, 7789}, {7753, 59546}, {7760, 52229}, {7768, 63945}, {7783, 53489}, {7784, 43618}, {7787, 63633}, {7794, 63941}, {7804, 63548}, {7812, 32820}, {7839, 47287}, {7858, 59634}, {7863, 14537}, {15491, 15515}, {15513, 58446}, {17130, 63928}, {18501, 39141}, {18844, 60262}, {19661, 34505}, {22253, 32822}, {22331, 63955}, {30103, 65632}, {30104, 65631}, {30435, 32815}, {31664, 31665}, {32520, 61624}, {32836, 63936}, {39590, 44377}, {40894, 40895}, {53106, 60186}, {60209, 62912}

X(68177) = midpoint of X(i) and X(j) for these {i,j}: {384, 19687}, {6656, 6658}, {6661, 66328}, {19686, 66319}, {19695, 19696}
X(68177) = reflection of X(i) in X(j) for these {i,j}: {6655, 8364}, {6656, 19697}, {7819, 384}, {8357, 7819}, {19695, 66347}, {66318, 66321}, {66321, 66319}, {66326, 66318}, {66335, 6661}, {66349, 66340}
X(68177) = complement of X(19695)
X(68177) = anticomplement of X(66347)
X(68177) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 19695, 66347}, {2, 19696, 19695}, {2, 33250, 548}, {3, 32981, 66391}, {4, 8361, 37350}, {4, 8369, 8361}, {4, 33181, 11318}, {4, 33201, 32954}, {5, 14035, 66409}, {20, 8362, 8354}, {20, 11286, 8362}, {140, 3552, 27088}, {382, 14001, 33184}, {384, 6655, 6661}, {384, 6656, 19697}, {384, 6658, 6656}, {384, 7819, 66318}, {384, 7924, 19692}, {384, 7948, 66317}, {384, 19686, 19687}, {384, 19688, 19677}, {384, 19691, 19702}, {384, 19693, 66319}, {384, 19696, 2}, {384, 33256, 19689}, {384, 66328, 6655}, {439, 32983, 3526}, {546, 66393, 7807}, {550, 7770, 8359}, {1003, 14035, 5}, {1656, 32979, 3363}, {3146, 7866, 66392}, {3146, 14039, 7866}, {3529, 33198, 11287}, {3530, 66412, 32992}, {3552, 8370, 140}, {3552, 14034, 8370}, {3830, 33242, 14064}, {3853, 8368, 5025},{3972, 32819, 5305}, {5025, 66408, 3853}, {5059, 32956, 5077}, {5073, 33237, 32974}, {6655, 6661, 8364}, {6655, 8364, 66335}, {6655, 19694, 6656}, {6655, 66320, 384}, {6655, 66335, 8357}, {6656, 6661, 19694}, {6656, 7819, 66343}, {6656, 19687, 6658}, {6656, 19689, 66344}, {6656, 19694, 8364}, {6656, 19697, 7819}, {6656, 66343, 66326}, {6658, 19689, 33256}, {6661, 8364, 7819}, {6661, 66319, 66320}, {7439, 21490, 19280},{7745, 7816, 6390}, {7770, 33007, 550}, {7791, 66387, 15704}, {7807, 11361, 546}, {7819, 8357, 66326}, {7819, 66321, 384}, {7819, 66335, 8364}, {7824, 8598, 33923}, {7841, 14037, 33185}, {7841, 33280, 62036}, {7887, 14068, 3845}, {7892, 33229, 8360}, {7892, 66419, 33229}, {7924, 19692, 66342}, {7924, 66342, 66346}, {7948, 19691, 66349}, {7948, 19702, 66340}, {7948, 66317, 19702}, {8356, 33257, 12103}, {8357, 66318, 7819}, {8357, 66343, 6656}, {8358, 62123, 33260}, {8360, 62026, 33229}, {8363, 33019, 66394}, {8363, 66423, 33019}, {8366, 33283, 33212}, {8367, 33923, 7824}, {11285, 33244, 8703}, {11317, 32961, 3858}, {13586, 32992, 3530}, {14031, 33007, 7770}, {14033, 32981, 3}, {14033, 33239, 32971}, {14033, 66391, 66415}, {14036, 33019, 8363}, {14036, 66423, 66394}, {14037, 33280, 7841}, {14038, 66405, 7933}, {14042, 33225, 33228}, {14042, 33228, 3861}, {14063, 33220, 33186}, {14068, 33255, 7887}, {15687, 33186, 14063}, {16044, 35297, 3628}, {16898, 33193, 33234}, {16924, 33187, 33235}, {16924, 33235, 549}, {16925, 33016, 33270}, {16925, 33270, 33233}, {19670, 66320, 19696}, {19686, 19693, 384}, {19686, 66320, 66328}, {19687, 66319, 384}, {19687, 66320, 8364}, {19687, 66321, 8357}, {19689, 33256, 6656}, {19689, 66344, 7819}, {19690, 66322, 66341}, {19690, 66341, 66334}, {19691, 66317, 7948}, {19692, 66346, 7819}, {19697, 66344, 19689}, {19702, 66340, 7819}, {19702, 66349, 7948}, {32954, 33201, 8369}, {32964, 44543, 632}, {32968, 35927, 3}, {32971, 32981, 33239}, {32971, 33239, 3}, {32975, 35287, 15720}, {32979, 32985, 1656}, {32991, 33216, 5070}, {32997, 66395, 62159}, {33016, 33233, 5}, {33018, 33246, 33249}, {33018, 33249, 5066}, {33019, 66423, 62034}, {33183, 50687, 33292}, {33185, 62036, 7841}, {33193, 33234, 62155}, {33214, 35955, 550}, {33229, 35954, 7892}, {33229, 66419, 62026}, {35954, 66419, 8360}, {37060, 38071, 32963}, {62034, 66394, 33019}, {66317, 66349, 66340}, {66320, 66328, 6661}


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...