Τετάρτη 16 Οκτωβρίου 2024

THEBAULT'S PSEUDOISOSCELES TRIANGLE

Victor Thebault published the following theorem as an exercise:

Si le cercle qui passe par les pieds des bissectrices intérieures d'un triangle est tangent à l'un des côtés, le triangle est isocèle, et réciproquement. 
(If the circle passing through the feet of the interior bisectors of a triangle is tangent to one of the sides, the triangle is isosceles, and vice versa.)

Solution by (A.M.)  [false]
Journal de mathématiques élémentaires.  
75e Annee - No 1 -  1er Octobre 1950, p. 3, #14250

Joseph Andersonn proved that the triangle is not necessarily isosceles.
CERCLE PASSANT PAR LES PIEDS DES BISSECTRICES INTÉRIEURES D'UN TRIANGLE ET TANGENT À L'UN DES CÔTÉS
par A. Monjallon. 
Journal de mathématiques élémentaires.  
75e Annee - No 20, 15 Juillet 1951, pp. 153 - 4

CERCLE PASSANT PAR LES PIEDS DES BISSECTRICES INTÉRIEURES D'UN TRIANGLE ET TANGENT À L'UN DES CÔTÉS
par Rene Blanchard. 
Journal de mathématiques élémentaires.  
76e Annee - No 4, 15 Novembre 1951, pp. 25 - 6 

PDF File Victor Thebault

Francisco Javier García Capitán's Solution (in Spanish)
wrong-thebault

Mail Antreas P. Hatzipolakis

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...