Σάββατο 13 Ιουλίου 2024

SAME CENTROID

Let ABC be a triangle and A'B'C' the cevian triangle of O

Denote

Ma, Mb, Mc = the midpoints of AA'. BB', CC', resp.

Ha, Hb, Hc = the orthocenters of OMbMc, OMcMa, OMaMb, resp,

The triangles ABC and HaHbHc share the same centroid G

APH

Francisco Javier García Capitán A triangle of orthocenters with centroid G
FJGC

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(5459) Let ABC be a triangle, let A', B', C' be the midpoints of BC, CA, AB. Let L_a be the perpendicular through A' ...