Σάββατο 13 Ιουλίου 2024

SAME CENTROID

Let ABC be a triangle and A'B'C' the cevian triangle of O

Denote

Ma, Mb, Mc = the midpoints of AA'. BB', CC', resp.

Ha, Hb, Hc = the orthocenters of OMbMc, OMcMa, OMaMb, resp,

The triangles ABC and HaHbHc share the same centroid G

APH

Francisco Javier García Capitán A triangle of orthocenters with centroid G
FJGC

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...