Σάββατο 13 Ιουλίου 2024

SAME CENTROID

Let ABC be a triangle and A'B'C' the cevian triangle of O

Denote

Ma, Mb, Mc = the midpoints of AA'. BB', CC', resp.

Ha, Hb, Hc = the orthocenters of OMbMc, OMcMa, OMaMb, resp,

The triangles ABC and HaHbHc share the same centroid G

APH

Francisco Javier García Capitán A triangle of orthocenters with centroid G
FJGC

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690) Barycentrics    4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 +...