Δευτέρα 20 Μαρτίου 2023

POINTS ON THE McCAY CUBIC (K003) - 2

[APH = Antreas P. Hatzipolakis]:

Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P

Denote

Nbc, Ncb = the NPC centers of PBC', PCB', resp.

Nca, Nac = the NPC centers of PCA', PAC', resp.

Nab, Nba = the NPC centers of PAB', PAC', resp.

 

Which is the locus of P such that  Nbc, Ncb, Nca, Nac, Nab, Nba lie on a conic?

Note: I have read that for P = H the six points are conconic, but I do not remember where.

***lapsus memoriae***
For which P's  the Nbc, Ncb, Nca, Nac, Nab, Nba are concyclic?

 

[César Lozada]:

Locus for points on a conic: A quintic, circumscribing triangles {ABC, ABC-X3 reflections, infinite-altitude, X3-ABC reflections} . 

The only known ETC center on it is X(3).

For P=X(3) the conic is an ellipse with center X(140) and perspector:
Z = ISOGONAL CONJUGATE OF X(22233)
= (8*a^8-(29*b^2+35*c^2)*a^6+(39*b^4+29*b^2*c^2+54*c^4)*a^4-(b^2-c^2)*(23*b^4-6*b^2*c^2-35*c^4)*a^2+(5*b^2-8*c^2)*(b^2-c^2)^3)*(8*a^8-(35*b^2+29*c^2)*a^6+(54*b^4+29*b^2*c^2+39*c^4)*a^4-(b^2-c^2)*(35*b^4+6*b^2*c^2-23*c^4)*a^2+(8*b^2-5*c^2)*(b^2-c^2)^3) : :

= lies on these lines: {11539, 40684}

= isogonal conjugate of X(22233)

= intersection, other than A, B, C, of circumconics {{A, B, C, X(2), X(140)}} and {{A, B, C, X(3), X(11539)}}

= [ 3.6509898050992220, 2.4513665130743210, 0.2584923705025162 ]

No other remarkable points were found on this ellipse.

> ***lapsus memoriae***
> For which P's  the Nbc, Ncb, Nca, Nac, Nab, Nba are concyclic?

Not such lapsus. If you ask for locus for 4 points to be concyclic, calculus leads to a single equation. But if you ask for locus such that 6 points are concyclic, calculus leads to three lateral equations whose intersections are the desired locus.  Most of the times, these equations can’t be algebraically solved for degree>=3.

 

Locus for circularity:  P  ∈ {intersections of three lateral cubics, Ka, Kb, Kc}

 

Ka = -(2*a^6+a^2*b^2*c^2+7*a^2*b^4+3*b^4*c^2-c^6+4*a^2*c^4-5*a^4*c^2-7*a^4*b^2-2*b^6)*c^2*x^2*y+b^2*(-6*b^2*c^2-7*a^2*b^2-5*a^2*c^2+2*a^4+3*c^4+3*b^4)*c^2*x^2*z-(9*a^2*b^4-2*b^6+c^6+a^2*c^4-5*a^4*c^2-6*a^2*b^2*c^2+5*b^4*c^2-4*b^2*c^4-10*a^4*b^2+3*a^6)*c^2*x*y^2-2*(5*a^2*b^4-b^2*c^4-2*a^2*b^2*c^2-3*a^4*b^2-b^6+2*b^4*c^2+a^2*c^4-2*a^4*c^2+a^6)*c^2*x*y*z+b^2*(-b^6+4*b^4*c^2+4*a^2*b^4-5*b^2*c^4-8*a^2*b^2*c^2-5*a^4*b^2+2*c^6-4*a^4*c^2+2*a^6)*x*z^2-a^2*(c^4-3*a^2*b^2+2*b^4+a^4-2*a^2*c^2-3*b^2*c^2)*c^2*y^3-a^2*(-11*b^2*c^2-9*a^2*b^2+7*b^4+4*a^4-8*a^2*c^2+4*c^4)*c^2*y^2*z+a^2*(a^6-2*a^4*b^2-4*a^4*c^2+a^2*b^2*c^2+a^2*b^4+5*a^2*c^4+7*b^2*c^4-2*c^6-5*b^4*c^2)*y*z^2+b^2*a^2*(2*c^4-3*a^2*c^2-3*b^2*c^2+a^4-2*a^2*b^2+b^4)*z^3 = 0

and cyclically Kb, Kc from Ka.

 

Their intersections are 7 real points (P1..P7) and 2 imaginary points. Three of them can be easily expressed:

P1 =2*a^2*b^2 : -b^2*(a^2+b^2-c^2) : c^4-3*a^2*b^2+2*b^4+a^4-2*a^2*c^2-3*b^2*c^2

and P2, P3  obtained cyclically from P1. But these degenerate the circle.

 

Conjectures (based on numerical analysis):

·There is just one center P* such that the nine-point-centers are concyclic on a circle (O*)

·P* lies on these cubics: K003 (McCay cubic again), K762, K849, K854

·O* lies on K258

 

ETC-(6-9-13)-search numbers for points:

1) {-8.67698625990118, 2.06523164148807, 6.21565161929319}

2) {-5.13431209747574, -2.47207619508091, 7.72178435425997} = P1

3) {0.0222518774850184, 0.0255746642599759, 3.61268884781131} = P*

4) {0.151423470638859, -16.0684952680259, 14.6951196040921} = P3

5) {3.92996728448760, 9.78031284777500, -4.94415239016182} = P2

6) {4.27283085639944, -10.4257496351357, 8.88641537250938}

7) {31.5113551028021, 31.9147470363133, -32.9978627445258}

 

8) {0.686609686609687 - 0.269678850511663 i, 0.566951566951567 + 0.471937988395411 i, -0.709401709401709 - 0.202259137883748 i}

 

9) {0.686609686609687 + 0.269678850511663 i, 0.566951566951567 - 0.471937988395411 i, -0.709401709401709 + 0.202259137883748 i}

 

César Lozada


 

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...