Σάββατο 2 Οκτωβρίου 2021

HATZIPOLAKIS - SUPPA CIRCLE

Locus Problem:


Let ABC be a triangle, A'B'C' the pedal triangle of H and P a point.
Denote: (Oa), (Ob), (Oc) = the circumcircles of (AA'A"), (BB'B|), (CC'C") resp. (ie the circles with diameters AA", BB", CC", resp)

(O'a), (O'b), (O'c) = the reflections of (Oa), (Ob), (Oc) in AA', BB'. CC', resp.

R'a = the radical axis of (O'b), (O'c)
R'b = the radical axis of (O'c), (O'a)
R'c = the radical axis of (O'a), (O'b)

R'1, R'2, R'3 = the reflections of R'a, R'b, R'c in BC, CA, AB, resp.
The locus of P such that the parallels to R'1, R'2, R'3 through A',B',C', resp. is the circle (X(382), R), the reflection of the circumcircle in the orthocenter H.

The circle is named HATZIPOLAKIS - SUPPA circle

Let Q5=Q5(P) be the concurrency point.

*** ETC points on the circle:
X(i), i=10152,10721,10722,10723,10724,10725,10726,10727,10728,10729,10730,10731,10732,10733,10734,10735,10736,10737,14989

*** ETC pairs (P=X(i),Q5=X(j)): {10152,133},{10721,125},{10722,115},{10723,114},{10724,119},{10725,118},{10726,124},{10727,116},{10728,11},{10729,5511},{10730,5510},{10731,25640},{10732,117},{10733,113},{10734,5512},{10735,132},{10736,1312},{10737,1313},{14989,3258}

*** Q5(P)=image of P under the homotety with center H and factor k=-1/2
*** The locus of points Q5(P) with P∈(X(382),R) is the ninepoint circle of ABC.

Reference: Euclid 2592

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...