Τετάρτη 1 Οκτωβρίου 2014

PARALLEL NN-LINES

10. Let ABC be a triangle and P a point.

Denote:

Ab, Ac = the orthogonal projections of A on PB,PC, resp.

Na1 = the NPC center of AAbAc

Na2 = the NPC center of Na1AbAc.

Similarly Nb1, Nb2 and Nc1, Nc2.

The lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel.

11. If P = I,

the lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel to Euler Line of ABC

21. Let ABC be a triangle.

Denote:

Na1 = the NPC center of IBC

Na2 = the NPC center of Na1BC.

Similarly Nb1,Nb2, Nc1,Nc2

The lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel to Euler Line of ABC

31. Let ABC be a triangle and IaIbIc the antipedal triangle of I (excentral triangle)

Denote:

Ab, Ac = the orthogonal projections of A on IaIc, IaIb, resp.

Na1 = the NPC center of AAbAc

Na2 = the NPC center of Na1AbAc

The lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel to Euler Line of ABC

41. Let ABC be a triangle and IaIbIc the antipedal triangle of I (excentral triangle)

Denote:

Na1 = the NPC center of IaBC

Oa = the circumcenter of IaBC

Nao1 = The NPC center of OaBC.

Similarly Nb1, Nbo1, Nc1, Nco1.

The lines Na1Nao1, Nb1Nbo1, Nc1Nco1 are parallel to OI line of ABC.

Antreas P. Hatzipolakis, 1 October 2014


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...