Τετάρτη 1 Οκτωβρίου 2014

PARALLEL NN-LINES

10. Let ABC be a triangle and P a point.

Denote:

Ab, Ac = the orthogonal projections of A on PB,PC, resp.

Na1 = the NPC center of AAbAc

Na2 = the NPC center of Na1AbAc.

Similarly Nb1, Nb2 and Nc1, Nc2.

The lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel.

11. If P = I,

the lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel to Euler Line of ABC

21. Let ABC be a triangle.

Denote:

Na1 = the NPC center of IBC

Na2 = the NPC center of Na1BC.

Similarly Nb1,Nb2, Nc1,Nc2

The lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel to Euler Line of ABC

31. Let ABC be a triangle and IaIbIc the antipedal triangle of I (excentral triangle)

Denote:

Ab, Ac = the orthogonal projections of A on IaIc, IaIb, resp.

Na1 = the NPC center of AAbAc

Na2 = the NPC center of Na1AbAc

The lines Na1Na2, Nb1Nb2, Nc1Nc2 are parallel to Euler Line of ABC

41. Let ABC be a triangle and IaIbIc the antipedal triangle of I (excentral triangle)

Denote:

Na1 = the NPC center of IaBC

Oa = the circumcenter of IaBC

Nao1 = The NPC center of OaBC.

Similarly Nb1, Nbo1, Nc1, Nco1.

The lines Na1Nao1, Nb1Nbo1, Nc1Nco1 are parallel to OI line of ABC.

Antreas P. Hatzipolakis, 1 October 2014


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...