Πέμπτη 29 Μαΐου 2014

APPLES ( A problem in Facebook)

Μια φορά περνούσανε τρεις από έναν τόπο που ήταν μια μηλιά φορτωμένη με μήλα. Κόβει ο ένας το ένα τρίτο των μήλων. Απ' όσα μείνανε κόβει ο δεύτερος το ένα τρίτο. Και απ' όσα μείνανε κόβει ο τρίτος το ένα τρίτο. Όσα μείνανε τελικά τα μοιράσανε με τέτοιο τρόπο που και οι τρεις πήρανε τον ίδιο αριθμό μήλων συνολικά.

Πόσα μήλα είχε η μηλιά και πόσα πήρε ο καθένας; Ζητείται η μικρότερη λύση.

Ας υποθέσουμε ότι είχε x μήλα. Ο πρώτος κόβει x/3 και μένουν στην μηλιά x - (x/3) = 2x/3. Ο δεύτερος κόβει το 1/3 από αυτά δηλαδή (2x/3)/3 = 2x/9. Μένουν τώρα στη μηλιά (2x/3) - (2x/9) = 4x/9. Από αυτά ο τρίτος κόβει το 1/3 δηλαδή (4x/9)/3 = 4x/27. και μένουν στην μηλιά πάνω 4x/9 - 4x/27 = 8x/27.

Συνοψίζω: Ο πρώτος έκοψε x/3, ο δεύτερος 2x/3, ο τρίτος 4x/27 και μείνανε στην μηλιά 8x/27.

Αυτά που μείνανε θα τα μοιράσουν σε τρία μέρη a,b,c έτσι ώστε ο πρώτος να πάρει a, o δεύτερος b και ο τρίτος c και να έχουν τον ίδιο αριθμό μήλων τελικά ο καθένας.

Έτσι έχουμε:

(x/3)+ a = (2x/3) + b = (4x/27) + c. Επειδή τώρα ζητούμε τον μικρότερο αριθμό μήλων, θέτουμε στον a την μικρότερη ακέραιη θετική τιμή δηλαδή 0. Και οι εξισώσεις μας γίνονται: x/3 = (2x/3) + b = (4x/27) + c. Λύνοντας ως προς b και c βρίσκουμε ότι:

b = x / 9 και c = 5x / 27. Επειδή τώρα ζητούμε τον μικρότερο ακέραιο x έτσι ώστε και οι b = x / 9 ,c = 5x / 27 να είναι ακέραιοι, αυτός είναι ο 27. Έτσι ο πρώτος πήρε 9 + 0 ο δεύτερος 8 + 1 και ο τρίτος 4 + 5.

Facebook

Σάββατο 3 Μαΐου 2014

ORTHOLOGIC - PERSPECTIVE TRIANGLES

Let ABC be a triangle and A'B'C' the cevian triangle of P.

Denote:

Ab, Ac = The circumcenters of APB', APC', resp.

Bc, Ba = The circumcenters of BPC', BPA', resp.

Ca, Cb = The circumcenters of CPA', CPB', resp.

1. M1a,M1b,M1c = The midpoints of AbAc,BcBa,CaCb, resp.

Which is the locus of P such that:

1.1. ABC, M1aM1bM1c are perspective?

1.2. ABC, M1aM1bM1c are orthologic?

1.3. The perpendicular bisectors of AbAc,BcBa,CaCb are concurrent?

For P = G:

1.2. ABC, M1aM1bM1c are orthologic.

Orthologic center (M1aM1bM1c, ABC) = N

Orthologic center (ABC, M1aM1bM1c) : Anopolis #1284, #1295

1.3. The perpendicular bisectors concur at van Lamoen Circle Center X(1153)

2. M2a,M2b,M2c = The midpoints of BcCb, CaAc, AbBa, resp.

Which is the locus of P such that:

2.1. ABC, M2aM2bM2c are perspective?

2.2. ABC, M2aM2bM2c are orthologic?

2.3. The perpendicular bisectors of BcCb, CaAc, AbBa are concurrent?

For P = G:

2.2. ABC, M2aM2bM2c are orthologic.

Orthologic center (M2aM2bM2c, ABC) = ?

Orthologic center (ABC, M2aM2bM2c) = G

2.3. The perpendicular bisectors concur at van Lamoen Circle Center X(1153)

3. M3a,M3b,M3c = The midpoints of BaCa, CbAb, AcBc, resp.

Which is the locus of P such that:

3.1. ABC, M3aM3bM3c are perspective?

3.2. ABC, M3aM3bM3c are orthologic?

3.3. The perpendicular bisectors of BaCa, CbAb, AcBc are concurrent?

For P = G

3.2. ABC, M3aM3bM3c are orthologic.

Orthologic center (M3aM3bM3c, ABC) = O

Orthologic center (ABC, M3aM3bM3c) = ?

3.3. The perpendicular bisectors concur at van Lamoen Circle Center X(1153)

4. Which is the locus of P such that:

4.1. M1aM1bM1c, M2aM2bM2c

4.2. M1aM1bM1c, M3aM3bM3c

4.3. M2aM2bM2c, M3aM3bM3c

are perspective/orthologic ?

4.4. The Euler lines of M1aM1bM1c, M2aM2bM2c, M3aM3bM3c are concurrent?

For P = G ??

5. Which is the locus of P such that:

4.1. M1aM2aM3a, M1bM2bM3b

4.2. M1aM2aM3a, M1cM2cM3c

4.3. M1bM2bM3b, M1cM2cM3c

are perspective/orthologic ?

4.4. The Euler lines of M1aM2aM3a, M1bM2bM3b, M1cM2cM3c are concurrent?

For P = G ??

Antreas P. Hatzipolakis, 4 May 2014

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...