Πέμπτη 10 Απριλίου 2014

RADICAL AXES 1.1

Let ABC be a triangle, P a point and A'B'C' the cevian triangle of P. Denote:

Ab, Ac = the reflections of A' in AB, AC. resp.

A2, A3 = the reflections of A' in BB', CC', resp.

Oab, Oac = the circumcenters of BAbA2, CAcA3, resp.

Similarly (cyclically):

Obc, Oba and Oca, Ocb.

1. P = O.

The radical axes R1 =:((Oab),(Oac)), R2 =:((Obc),(Oba)), R3 =:((Oca),(Ocb))are concurrent at O.

The reflections of R1,R2,R3 in BC,CA,AB are the lines AN,BN,CN, resp.

2. P = H.

The radical axes R1 =:((Oab),(Oac)), R2 =:((Obc),(Oba)), R3 =:((Oca),(Ocb)) are concurrent on the Euler line of ABC.

The reflections of the radical axes S1 =:((Obc), (Ocb)), S2 =:((Oca),(Oac)), S3 =: ((Oab), (Oba)) in BC,CA,AB, resp. are concurrent.

The reflections of the radical axes T1 =: ((Oba), (Oca)), T2 =:((Ocb),(Oab)), T3 =:((Oac), (Obc)) in Bc,CA,AB are concurrent.

The triangles: bounded by the lines (T1,T2,T3) and the orthic A'B'C' are paralle;ogic.

Antreas P. Hatzipolakis, 10 April 2014


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...