Κυριακή 15 Δεκεμβρίου 2024
Douglas Hofstadter, FOREWORD
In: Clark Kimberling, Triangle Centers and Central Triangles. Congressus Numerantum, vol. 129, August, 1998. Winnipeg, Canada
Τρίτη 12 Νοεμβρίου 2024
REGULAR POLYGONS AND EULER LINES
Denote:
1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp.
1,2,3 are concurrent.
Hyacinthos 21592
GENERALIZATION
Let A1A2A3...A3k be a regular 3k-gon and P a point.
Denote:
1, 2, 3,.... 3k = the Euler lines of PA1A2, PA2A3, PA3A4,.....PA3kA1, resp.
These triads are concurrent
1, k+1, 2k+1
2, k+2, 2k+2
3, k+3, 2k+3
4, k+4, 2k+4
......
k, 2k, 3k
k = 2 (Regular Hexagon)
1, 3, 5
2, 4, 6
Δευτέρα 11 Νοεμβρίου 2024
ETC
X(66549) = X(1)X(6)∩X(391)X(551)
Barycentrics a (7 a + 3 (b + c)) : :See Juan José Isach Mayo, euclid 7450.
X(66549) lies on these lines: {1, 6}, {2, 4856}, {41, 30343}, {81, 18186}, {86, 16833}, {346, 3635}, {391, 551}, {572, 7991}, {573, 17474}, {604, 3339}, {902, 62842}, {940, 8056}, {966, 25055}, {988, 1384}, {1051, 5268}, {1419, 7274}, {1698, 4982}, {1766, 11224}, {2177, 62845}, {2262, 18398}, {2268, 9819}, {2269, 53054}, {2270, 51816}, {2276, 46189}, {2277, 9336}, {2280, 10980}, {2297, 41434}, {2321, 51093}, {2345, 3633}, {2999, 37633}, {3187, 19741}, {3217,9327}, {3241, 4898}, {3244, 5749}, {3337, 54420}, {3361, 4262}, {3618, 29573}, {3619, 3879}, {3620, 17023}, {3623, 3950}, {3624, 3686}, {3630, 4657}, {3631, 17306}, {3632, 5750}, {3636, 5296}, {3663, 60984}, {3664, 17014}, {3672, 60976}, {3679, 4545}, {3729, 29584}, {3746, 5120}, {3758, 55998}, {3759, 16832}, {3875, 46922}, {3945, 4859}, {3946, 4888}, {3986, 38314}, {4034, 17398}, {4058, 20050}, {4060, 26039}, {4254, 5563}, {4263, 63493}, {4357, 11008}, {4384, 31312}, {4393, 4821}, {4416, 63061}, {4512, 21747}, {4648, 60999}, {4667, 4862}, {4668, 17303}, {4677, 59772}, {4747, 53594}, {4851, 51126}, {4889, 61344}, {4902, 17301}, {4910, 7227}, {4969, 34595}, {5024, 37552}, {5256, 14996}, {5271, 19740}, {5272, 37675}, {5287, 14997}, {5393, 13941}, {5405, 8972}, {5540, 54385}, {6144, 41311}, {6173, 63401}, {7222, 50109}, {7271, 33633}, {7987, 37508}, {10199, 27524}, {11011, 38296}, {15048, 48827}, {15668, 50124}, {16192, 41456}, {16829, 20146}, {16831, 17121}, {16834, 17117}, {17011, 62812}, {17022, 37680}, {17120, 25269}, {17257, 63026}, {17272, 20080}, {17275, 61302}, {17284, 63119}, {17294, 63053}, {17296, 34573}, {17299, 34747}, {17304, 20090}, {17319, 63108}, {17321, 62996}, {17330, 51110}, {17349, 29597}, {17353, 29602}, {17363, 29603}, {17368, 29605}, {17393, 50127}, {17395, 60933}, {17396, 63052}, {18907, 48818}, {19743, 56082}, {19745, 31993}, {19876, 50082}, {20818, 44841}, {21309, 37592}, {24239, 37689}, {24512, 42043}, {25101, 63123}, {29574, 51171}, {29578, 31313}, {29580, 63050}, {30308, 32431}, {30337, 55100}, {32087, 49543}, {32455, 41312}, {33630, 34231}, {37654, 51105}, {37685, 62818}, {42042, 63066}, {46475, 55716}, {47355, 50125}, {48824, 63633}
X(66549) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 6, 3731}, {1, 1449, 16667}, {1, 1743, 16673}, {1, 3973, 3247}, {1, 16475, 60846}, {1, 16667, 1743}, {6, 3247, 3973}, {6, 3723, 9}, {6, 3731,1743}, {6, 15492, 16670}, {6, 16674, 44}, {6, 16777, 15492}, {6,16884, 3723}, {9, 1449, 16666}, {9, 3247, 16677}, {9, 16884,1}, {1100, 1449, 1}, {1100, 16666, 16884}, {1100, 62212,1449}, {3241, 17355, 4898}, {3247, 3973, 3731}, {3723, 16666,6}, {3723, 16677, 3247}, {3731, 16667, 6}, {3945, 50114, 4859}, {3946, 63054, 4888}, {4034, 17398, 19875}, {5256, 14996, 62695}, {15492, 16668, 6}, {16666, 16884, 9}, {16668, 16777, 16670}, {16671, 16672, 9}, {16834, 17379, 25590}, {17398, 50131, 4034}, {29584, 37677, 3729}, {38314, 62985, 3986}
X(66550) = X(1)X(6)∩X(2)X(4898)
Barycentrics a (5 a + 9 (b + c)) : :See Juan José Isach Mayo, euclid 7450.
X(66550) lies on these lines: {1, 6}, {2, 4898}, {346, 3636}, {391, 51071}, {573, 16189}, {594, 34595}, {966, 51093}, {1213, 4677}, {1255, 2999}, {1766, 30392}, {2171, 13462}, {2321, 25055}, {3175, 19746}, {3241, 3986}, {3619, 29573}, {3620, 29574}, {3622, 3950}, {3624, 17314}, {3631, 41312}, {3633, 5257}, {3635, 5296}, {3663, 59375}, {3729, 29580}, {3945, 60971}, {4021, 29624}, {4034,34747}, {4058, 5550}, {4668, 17388}, {4686, 36834}, {4740, 17319}, {4764, 10436}, {4772, 16826}, {4788, 17116}, {4902, 17392}, {5287, 62695}, {7991, 37508}, {9331, 17053}, {10980, 41423}, {14996, 27789}, {15655, 37552}, {15828, 51104}, {16831, 17117}, {16833, 17393}, {17019, 23958}, {17022, 62851}, {17272, 29585}, {17299, 19875}, {17321, 29602}, {17330, 51097}, {17355, 38314}, {17398, 51110}, {19741, 56082}, {21871, 50190}, {25502, 60724}, {37499, 58245}, {37587, 54285}, {37602, 54322}, {37633, 62816}, {41456, 63468}, {46475, 55594}, {50093, 62996}, {50110, 63014}, {50113, 59772}, {50123, 51066}, {51105, 63055}, {51107, 63086}
X(66550) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 37, 16667}, {1, 3247, 3731}, {1, 16673, 1743}, {9, 3247, 16674}, {37, 3973, 3731}, {37, 62212, 9}, {1449, 46845, 1}, {3247,3723, 1}, {3247, 3731, 16673}, {3723, 16777, 3247}, {3723, 16814, 46845}, {3731, 16667, 3973}, {16672, 46845, 1449}, {16826, 17151, 31312}, {17299, 62648, 19875}, {17319, 29597, 25590}
X(66551) = X(1)X(6)∩X(200)X(4695)
Barycentrics a (5 a^3 - 5 a^2 (b + c) - a (b + c)^2 + 3 (3 b^3 + b^2 c + b c^2 + 3 c^3)) : :See Juan José Isach Mayo, euclid 7450.
X(66551) lies on these lines: {1, 6}, {78, 62695}, {200, 4695}, {902, 12526}, {3241, 4656}, {3339, 56010}, {3430, 7991}, {3940, 23511}, {3953, 7963}, {3961, 18421}, {3984, 8951}, {4257, 54422}, {4902, 11112}, {7322, 44840}, {11520, 37633}, {13462, 62865}, {16371, 33795}, {17022, 63159}, {17276, 34701}, {17597, 46943}, {54310, 62823}
X(66551) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 3973, 16485}, {1, 5692, 60846}, {72, 16485, 3973}, {10179, 15600, 1}
Πέμπτη 7 Νοεμβρίου 2024
PYTHAGOREAN THEOREM
Athanasios Gakopoulos, Farsala, Greece
Debabrata Nag, Kolkata, India
Gak_Nag_Pythagoras_07-11_2024
Κυριακή 3 Νοεμβρίου 2024
X(370)
From: Antreas Hatzipolakis
To: euclid@groups.io, Chris van Tienhoven
Subject: Re: [euclid] Homothetic to Morley
Dear Chris
1. X(5390)
The point X(5390) was listed "coordinates-less"
X(5390) = EULER-MORLEY-ZHAO POINT
Barycentrics (unknown)
Let DEF be the classical Morley triangle. The Euler lines of the three triangles AEF, BFD, CDE appear to concur in a point for which barycentric coordinates remain to be discovered.
Construction by Zhao Yong of Anhui, China, October 2, 2012.
Then you, with your fruitful "fields method", managed to find the trilinears of the point with trigonometric expressions (Hyacinthos 21902)
2. X(370)
Jiang Huanxin proposed in the American Mathematical Monthly the following problem
In triangle ABC find all points P such that the cevian triangle of P is equilateral (my wording)
The problem was solved analytically by David Goering.
(I have scanned the solution and can be found in my blog here
CEVIAN TRIANGLES )
Jean-Pierre Ehrmann computed the barycentrics as unique solutions of a system of equations.
I am wondering if the trlinears of the point can be computed with trigonometric expressions, as in the point X(5390) The same for the center of the equilateral triangle in question
Greetings from sunny Athens
APH
***********************
Created at: Sun, Nov 3, 2024 at 11:48 PM
From: Chris van Tienhoven
To: Antreas Hatzipolakis
Subject: RE: Homothetic to Morley
Dear Antreas,
I am not so sure if X(370) is suitable to tackle with Perspective Fields.
In 2010 I corresponded with Francisco about X(370) and in 2012 with Peter Moses.
I had already calculated the coordinates of X(370) and I found there are 3 solutions for the specifications of X(370), two of which can be imaginary. Peter told me there even may be 6 solutions.
He wrote in 2012 to me:
There are 2 sets of 3 solutions, depending on the external Fermat (giving X(370) and a maximum of 2 imaginaries) or internal Fermat (giving 3 reals) construction.
X(370) pertains to the equilateral cevian point that is inside the triangle. Each set of solutions comes from intersecting 3 conics.
As to it being a center .. I think it probably is, but the test is to see if, when symmetrically written, the coordinates remain unchanged under a bicentric exchange. It doesn't necessarily mean that a point is not a center if the coordinates are not symmetric. It may well be possible they can be made so.
See attachment for the one real solution I found in 2012. It is pretty long.
The expression is checked with figures to be correct.
Best regards,
Chris
Σάββατο 2 Νοεμβρίου 2024
CEVIAN TRIANGLES
The American Mathematical Monthly
Vol. 104, No. 6 (Jun. - Jul., 1997), pp. 567-570
David Goering
X(370) = EQUILATERAL CEVIAN TRIANGLE POINT
Mowaffaq Hajja, The Arbitrariness of the Cevian Triangle
The American Mathematical Monthly
Vol. 113, No. 5 (May, 2006), pp. 443-447
Mowaffaq Hajja
Τρίτη 29 Οκτωβρίου 2024
FEUERBACH POINT PROBLEM
Let ABC be a triangle. The Oi line intersects AB at C'.The circle (Oa) with diameter AI intersects the circumcircle again at A". The line C'A" intersects (Oa) again at Ca.Ca is the orthogonal projection of A on IC.
Lemma 2
Let ABC be a triangle and Ba, Ca the orthogonal projeections of A on IB, IC, resp. The line BaCa intersects AC, AB at B'a, C'a, resp. B'a,C'a are the midpoints of AC, AB, resp.
Lemma 3
Let ABC be a triangle. Denote C' = the midpoint of AB, Ma, Mb = the midpoints of AI, BI, resp. and Ba = the orthogonal projection of A on BI. The points Ma, C', Mb, Ba are concyclic. The circle is the NPC of AIB.
Problem
By David Nguyen
Rewritten with cyclic notation
Let ABC be a triangle. The OI line intersects BC, CA, AB at A', B', C', resp.
Denote
(Oa) = the circle with diameter AI
A" = the 2nd intersection of the circumcircle and (Oa)
Ba = the 2nd intersection of B'A" and (Oa)
Ca = the 2nd intersection of C'A" and (Oa)
B'a = BaCa ∩ AC , C'a = BaCa ∩ AB
(Oab) = the circumcircle of OaB'aCa
(Oac)= the circumcircle of OaBaC'a
The 2nd intersection of (Oab), (Oac) is the Feuerbach point
Proof
By the lemmata, the problem is equivalent to the following problem
Let ABC be a triangle and A'B'C' the medial triangle
Denote
A", B", C" = the midpoints of IA, IB, IC, resp.
The circumcircles of A'B"C", B'C"A", C'A"B" concur at the Feuerbach point
True, since the circumcircles of A'B"C", B'C"A", C'A"B" are the NPCs of IBC ICA, IAB resp. and they concur at the Poncelet point of ABCI = the Feuerbach point.
Σάββατο 19 Οκτωβρίου 2024
PANAKIS' PSEUDOISOSCELES TRIANGLE
Prove that the triangle D1D2D3 can be isosceles without ABC being isosceles.
Ioannis Panakis, Plane Trigonometry, vol. B, Athens (1973), p. 110 [in Greek]
I call this triangle ABC as Panakis pseudoisosceles triangle
Properties of ABC (in the same book pp. 109-111)
1. The A, D1, D2, D3 are concyclic [the cevian circle of I passes through A]
2. (a + b + c)*(-a^2 + b^2 + c^2) + abc = 0
3. a / (b + c) = b / (c + a) + c / (a + b)
4. (r1 - r) / (r1 + r) = ((r2 - r) / (r2 + r)) + ((r3 - r) / (r3 + r))
where r = the inradius and r1, r2, r3 the exradii.
PDF of the pages of the book Panakis
Τετάρτη 16 Οκτωβρίου 2024
THEBAULT'S PSEUDOISOSCELES TRIANGLE
Si le cercle qui passe par les pieds des bissectrices intérieures d'un triangle est tangent à l'un des côtés, le triangle est isocèle, et réciproquement.
(If the circle passing through the feet of the interior bisectors of a triangle is tangent to one of the sides, the triangle is isosceles, and vice versa.)
Solution by (A.M.) [false]
Journal de mathématiques élémentaires.
75e Annee - No 1 - 1er Octobre 1950, p. 3, #14250
Joseph Andersonn proved that the triangle is not necessarily isosceles.
CERCLE PASSANT PAR LES PIEDS DES BISSECTRICES INTÉRIEURES D'UN TRIANGLE ET TANGENT À L'UN DES CÔTÉS
par A. Monjallon.
Journal de mathématiques élémentaires.
75e Annee - No 20, 15 Juillet 1951, pp. 153 - 4
CERCLE PASSANT PAR LES PIEDS DES BISSECTRICES INTÉRIEURES D'UN TRIANGLE ET TANGENT À L'UN DES CÔTÉS
par Rene Blanchard.
Journal de mathématiques élémentaires.
76e Annee - No 4, 15 Novembre 1951, pp. 25 - 6
PDF File Victor Thebault
Francisco Javier García Capitán's Solution (in Spanish)
wrong-thebault
Τρίτη 30 Ιουλίου 2024
Πέμπτη 18 Ιουλίου 2024
Τρίτη 16 Ιουλίου 2024
FJGC, An unique orthocentroidal system
Francisco Javier García Capitán, An unique orthocentroidal system
FJGC
Κυριακή 14 Ιουλίου 2024
ETC APH-FJGC-EULER
X(44234) = 1ST HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
X(44898) = 2ND HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
X(45306) = 3RD HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
X(45307) = 4TH HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
X(45308) = 5TH HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
X(64480) = 6TH HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
Barycentrics -a^16 b^2 + 5 a^14 b^4 - 9 a^12 b^6 + 5 a^10 b^8 + 5 a^8 b^10 - 9 a^6 b^12 + 5 a^4 b^14 - a^2 b^16 - a^16 c^2 - 2 a^14 b^2 c^2 + 3 a^12 b^4 c^2 + 13 a^10 b^6 c^2 - 23 a^8 b^8 c^2 + 13 a^6 b^10 c^2 - 6 a^4 b^12 c^2 + 4 a^2 b^14 c^2 - b^16 c^2 + 5 a^14 c^4 + 3 a^12 b^2 c^4 - 28 a^10 b^4 c^4 + 17 a^8 b^6 c^4 + 17 a^6 b^8 c^4 - 7 a^4 b^10 c^4 - 12 a^2 b^12 c^4 + 5 b^14 c^4 - 9 a^12 c^6 + 13 a^10 b^2 c^6 + 17 a^8 b^4 c^6 - 42 a^6 b^6 c^6 + 8 a^4 b^8 c^6 + 28 a^2 b^10 c^6 - 9 b^12 c^6 + 5 a^10 c^8 - 23 a^8 b^2 c^8 + 17 a^6 b^4 c^8 + 8 a^4 b^6 c^8 - 38 a^2 b^8 c^8 + 5 b^10 c^8 + 5 a^8 c^10 + 13 a^6 b^2 c^10 - 7 a^4 b^4 c^10 + 28 a^2 b^6 c^10 + 5 b^8 c^10 - 9 a^6 c^12 - 6 a^4 b^2 c^12 - 12 a^2 b^4 c^12 - 9 b^6 c^12 + 5 a^4 c^14 + 4 a^2 b^2 c^14 + 5 b^4 c^14 - a^2 c^16 - b^2 c^16 + 4 a^13 b c OH S - 6 a^11 b^3 c OH S - 6 a^9 b^5 c OH S + 10 a^7 b^7 c OH S + 6 a^5 b^9 c OH S - 12 a^3 b^11 c OH S + 4 a b^13 c OH S - 6 a^11 b c^3 OH S + 24 a^9 b^3 c^3 OH S - 12 a^7 b^5 c^3 OH S - 24 a^5 b^7 c^3 OH S + 30 a^3 b^9 c^3 OH S - 12 a b^11 c^3 OH S - 6 a^9 b c^5 OH S - 12 a^7 b^3 c^5 OH S + 36 a^5 b^5 c^5 OH S - 18 a^3 b^7 c^5 OH S + 12 a b^9 c^5 OH S + 10 a^7 b c^7 OH S - 24 a^5 b^3 c^7 OH S - 18 a^3 b^5 c^7 OH S - 8 a b^7 c^7 OH S + 6 a^5 b c^9 OH S + 30 a^3 b^3 c^9 OH S + 12 a b^5 c^9 OH S - 12 a^3 b c^11 OH S - 12 a b^3 c^11 OH S + 4 a b c^13 OH S : :See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64480) lies on these lines: {2, 3), {542, 44123}, {1989, 8106}, {8115, 45016}, {13415, 18374}, {15360, 24650}, {32225, 44125}
X(64481) = 7TH HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
Barycentrics -a^16 b^2 + 5 a^14 b^4 - 9 a^12 b^6 + 5 a^10 b^8 + 5 a^8 b^10 - 9 a^6 b^12 + 5 a^4 b^14 - a^2 b^16 - a^16 c^2 - 2 a^14 b^2 c^2 + 3 a^12 b^4 c^2 + 13 a^10 b^6 c^2 - 23 a^8 b^8 c^2 + 13 a^6 b^10 c^2 - 6 a^4 b^12 c^2 + 4 a^2 b^14 c^2 - b^16 c^2 + 5 a^14 c^4 + 3 a^12 b^2 c^4 - 28 a^10 b^4 c^4 + 17 a^8 b^6 c^4 + 17 a^6 b^8 c^4 - 7 a^4 b^10 c^4 - 12 a^2 b^12 c^4 + 5 b^14 c^4 - 9 a^12 c^6 + 13 a^10 b^2 c^6 + 17 a^8 b^4 c^6 - 42 a^6 b^6 c^6 + 8 a^4 b^8 c^6 + 28 a^2 b^10 c^6 - 9 b^12 c^6 + 5 a^10 c^8 - 23 a^8 b^2 c^8 + 17 a^6 b^4 c^8 + 8 a^4 b^6 c^8 - 38 a^2 b^8 c^8 + 5 b^10 c^8 + 5 a^8 c^10 + 13 a^6 b^2 c^10 - 7 a^4 b^4 c^10 + 28 a^2 b^6 c^10 + 5 b^8 c^10 - 9 a^6 c^12 - 6 a^4 b^2 c^12 - 12 a^2 b^4 c^12 - 9 b^6 c^12 + 5 a^4 c^14 + 4 a^2 b^2 c^14 + 5 b^4 c^14 - a^2 c^16 - b^2 c^16 - 4 a^13 b c OH S + 6 a^11 b^3 c OH S + 6 a^9 b^5 c OH S - 10 a^7 b^7 c OH S - 6 a^5 b^9 c OH S + 12 a^3 b^11 c OH S - 4 a b^13 c OH S + 6 a^11 b c^3 OH S - 24 a^9 b^3 c^3 OH S + 12 a^7 b^5 c^3 OH S + 24 a^5 b^7 c^3 OH S - 30 a^3 b^9 c^3 OH S + 12 a b^11 c^3 OH S + 6 a^9 b c^5 OH S + 12 a^7 b^3 c^5 OH S - 36 a^5 b^5 c^5 OH S + 18 a^3 b^7 c^5 OH S - 12 a b^9 c^5 OH S - 10 a^7 b c^7 OH S + 24 a^5 b^3 c^7 OH S + 18 a^3 b^5 c^7 OH S + 8 a b^7 c^7 OH S - 6 a^5 b c^9 OH S - 30 a^3 b^3 c^9 OH S - 12 a b^5 c^9 OH S + 12 a^3 b c^11 OH S + 12 a b^3 c^11 OH S - 4 a b c^13 OH S : :See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64481) lies on these lines: {2, 3}, {542, 44124}, {1989, 8105}, {8116, 45016}, {13414, 18374}, {15360, 24651}, {32225, 44126}
X(64482) = 8TH HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
Barycentrics -2 a^12 + 6 a^10 b^2 - 13 a^8 b^4 + 5 a^6 b^6 + 7 a^4 b^8 - 5 a^2 b^10 + 2 b^12 + 6 a^10 c^2 - 2 a^8 b^2 c^2 + 11 a^6 b^4 c^2 - 19 a^4 b^6 c^2 + 7 a^2 b^8 c^2 - 9 b^10 c^2 - 13 a^8 c^4 + 11 a^6 b^2 c^4 + 6 a^4 b^4 c^4 + 22 b^8 c^4 + 5 a^6 c^6 - 19 a^4 b^2 c^6 - 30 b^6 c^6 + 7 a^4 c^8 + 7 a^2 b^2 c^8 + 22 b^4 c^8 - 5 a^2 c^10 - 9 b^2 c^10 + 2 c^12 - 2 a^10 W + 5 a^8 b^2 W + 6 a^6 b^4 W - 7 a^4 b^6 W - 4 a^2 b^8 W + 2 b^10 W + 5 a^8 c^2 W - 30 a^6 b^2 c^2 W + 14 a^4 b^4 c^2 W + 25 a^2 b^6 c^2 W - 8 b^8 c^2 W + 6 a^6 c^4 W + 14 a^4 b^2 c^4 W - 46 a^2 b^4 c^4 W + 6 b^6 c^4 W - 7 a^4 c^6 W + 25 a^2 b^2 c^6 W + 6 b^4 c^6 W - 4 a^2 c^8 W - 8 b^2 c^8 W + 2 c^10 W : : where W^2 = a^4 - a^2 b^2 + b^4 - a^2 c^2 - b^2 c^2 + c^4See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64482) lies on these lines: {2, 3}, {2028, 31862}, {3413, 6321}
X(64483) = 9TH HATZIPOLAKIS-GARCÍA CAPITÁN-EULER POINT
Barycentrics -2 a^12 + 6 a^10 b^2 - 13 a^8 b^4 + 5 a^6 b^6 + 7 a^4 b^8 - 5 a^2 b^10 + 2 b^12 + 6 a^10 c^2 - 2 a^8 b^2 c^2 + 11 a^6 b^4 c^2 - 19 a^4 b^6 c^2 + 7 a^2 b^8 c^2 - 9 b^10 c^2 - 13 a^8 c^4 + 11 a^6 b^2 c^4 + 6 a^4 b^4 c^4 + 22 b^8 c^4 + 5 a^6 c^6 - 19 a^4 b^2 c^6 - 30 b^6 c^6 + 7 a^4 c^8 + 7 a^2 b^2 c^8 + 22 b^4 c^8 - 5 a^2 c^10 - 9 b^2 c^10 + 2 c^12 + 2 a^10 W - 5 a^8 b^2 W - 6 a^6 b^4 W + 7 a^4 b^6 W + 4 a^2 b^8 W - 2 b^10 W - 5 a^8 c^2 W + 30 a^6 b^2 c^2 W - 14 a^4 b^4 c^2 W - 25 a^2 b^6 c^2 W + 8 b^8 c^2 W - 6 a^6 c^4 W - 14 a^4 b^2 c^4 W + 46 a^2 b^4 c^4 W - 6 b^6 c^4 W + 7 a^4 c^6 W - 25 a^2 b^2 c^6 W - 6 b^4 c^6 W + 4 a^2 c^8 W + 8 b^2 c^8 W - 2 c^10 W : : where W^2 = a^4 - a^2 b^2 + b^4 - a^2 c^2 - b^2 c^2 + c^4See Antreas Hatzipolakis and Francisco Javier García Capitán, euclid 6388.
X(64483) lies on these lines: {2, 3}, {2029, 31863}, {3414, 6321}
Σάββατο 13 Ιουλίου 2024
SAME CENTROID
Denote
Ma, Mb, Mc = the midpoints of AA'. BB', CC', resp.
Ha, Hb, Hc = the orthocenters of OMbMc, OMcMa, OMaMb, resp,
The triangles ABC and HaHbHc share the same centroid G
Francisco Javier García Capitán A triangle of orthocenters with centroid G
FJGC
Παρασκευή 12 Ιουλίου 2024
AN ORTHOCENTER
Denote
Ma, Mb, Mc = the midpoints of AA', BB', CC', resp.
Ha, Hb, Hc = the orthocenters of HMbMc, HMcMa, HMaMb, resp.
Then
Orthocenter of HaHbHc = Nine Point Circle Center N
Euclid 6368
Romantics of Geometry
PROOF
The perpendicular from Mb to HMc intersects B'C' at A". In the triangle BB'C' we have MbA" // BC' and Mb = midpoint of BB', therefore A" is the midpoint of B'C'.
Similarly in the triangle CC'B' the perpendicular from Mc to HMb passes through the midpoint of B'C'. Therefore A" is the orthocenter Ha of HMbMc.
Similarly the orthocenters Hb, Hc of HMcMa, HMaMb are the midpoints of C'A', A'B', resp., that is HaHbHc is the medial triangle of A'B'C'
The orthocenter of HaHbHc is the circumcenter of A'B'C'
The circumcenter of A'B'C' is the Nine Point Circle center N of ABC.
H of HaHbHc = O of A'B'C' = N of ABC
QED
Σάββατο 29 Ιουνίου 2024
THREE CURIOUS MIDPOINTS
Ma = the midpoint of AbAc. Similarly Mb, Mc
Which is the locus of P such that ABC, MaMbMc are orthologic?
Antreas Hatzipolakis
Study:
Francisco Javier García Capitán: Three curious midpoints
FJGC
Παρασκευή 21 Ιουνίου 2024
BILOGIC TRIANGLES
Euclid 6242
Study by Francisco Javier García Capitán: Bilogic triangles by construction
Τετάρτη 27 Μαρτίου 2024
Cosmology of Plane Geometry: Concepts and Theorems
ΨΗΦ. Cosmology of Plane Geometry: Concepts and Theorems
ΨΗΦ. Cosmology of Plane Geometry: Concepts and Theorems
PREVIOUS VERSION
ΨΗΦ. Cosmology of Plane Geometry: Concepts and Theorems
ΨΗΦ. Cosmology of Plane Geometry: Concepts and Theorems
Τρίτη 26 Μαρτίου 2024
Fermat-Torricelli and Napoleon Points
A PLAGIOGONAL Approach
Σάββατο 9 Μαρτίου 2024
A PROOF OF MORLEY THEOREM
Abstract: In this work, an attempt has been made by the authors to present a PLAGIOGONAL
approach to prove the Morley Theorem involving the intersecting trisectors of the angles of a
scalene triangle. The objective of the present work is to also establish the non-orthogonal coordinates
of the vertices of Morley triangle.
Παρασκευή 19 Ιανουαρίου 2024
X(61637), X(61638)
X(61637) = ISOGONAL CONJUGATE Χ(61638)
BarycentricsSee Floor van Lamoen and Francisco, euclid 6085.
X(61637) lies on this line:
X(61637) = isogonal comjugate of X(61638)
X(61638) = X(2)X(3)∩X(195)X(15109)
BarycentricsSee Floor van Lamoen and Francisco, euclid 6085.
X(61638) lies on these lines:
X(61638) = isogonal comjugate of X(61637)
Douglas Hofstadter, FOREWORD
Douglas Hofstadter, FOREWORD In: Clark Kimberling, Triangle Centers and Central Triangles. Congressus Numerantum, vol. 129, August, 1998. W...
-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Thanasis Gakopoulos - Debabrata Nag, Morley Theorem ̶ PLAGIOGONAL Approach of Proof Abstract: In this work, an attempt has been made b...