Δευτέρα 18 Δεκεμβρίου 2023

X(61083), X(61084)

X(61083) = ISOGONAL CONJUGATE OF X(61084)

Barycentrics    (SB + SC)*(SA*SB - S*Sqrt[SA*SB])*(SA*SC - S*Sqrt[SA*SC]) : :

See Costas Vittas, Antreas Hatzipolakis and Peter Moses, euclid 6066.

X(61083) lies on the cubic K006, the curves Q039 and Q117 and this line: {4, 61084}

X(61083) = isogonal conjugate of X(61084)


X(61084) = ISOGONAL CONJUGATE OF X(61083)

Barycentrics    (SB + SC)*(SA*SB + S*Sqrt[SA*SB])*(SA*SC + S*Sqrt[SA*SC]) : :

See Costas Vittas, Antreas Hatzipolakis and Peter Moses, euclid 6066.

X(61084) lies on the cubic K006, the curves Q039 and Q117 and this line: {4, 61083}

X(61084) = isogonal conjugate of X(61083)


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...