Κυριακή 24 Δεκεμβρίου 2023

X(61298) - X(61300)

X(61298) = X(5)X(39494)∩X(1116)X(10224)

Barycentrics    (b-c)*(b+c)*(a^2*b^2*(a^2-b^2)^4*(a^2+b^2)+(a^2-b^2)^2*(a^8-3*a^2*b^6-b^8)*c^2+(-3*a^10+a^8*b^2+6*a^6*b^4-4*a^4*b^6+3*b^10)*c^4+(2*a^8-3*a^6*b^2-4*a^4*b^4-2*b^8)*c^6+(2*a^6+5*a^4*b^2-2*b^6)*c^8-(3*a^4+a^2*b^2-3*b^4)*c^10+(a-b)*(a+b)*c^12) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6029.

X(61298) lies on these lines: {5, 39494}, {1116, 10224}, {1594, 39512}, {10280, 39503}, {11615, 39509}, {18308, 50136}, {32478, 33332}


X(61299) = X(26)X(1853)∩X(30)X(511)

Barycentrics    2*a^10+a^6*(b^2-c^2)^2-4*a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)+a^4*(b^6+2*b^4*c^2+2*b^2*c^4+c^6) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6029.

X(61299) lies on these lines: {4, 13353}, {5, 22352}, {22, 34514}, {23, 15027}, {26, 1853}, {30, 511}, {52, 45732}, {125, 37936}, {140, 13419}, {143, 7553}, {146, 46445}, {154, 31181}, {156, 11206}, {186, 38728}, {265, 37925}, {382, 7592}, {428, 13364}, {546, 44829}, {548, 45286}, {1495, 37938}, {1533, 44283}, {1658, 23329}, {2937, 34826}, {3530, 17712}, {3627, 11750}, {3853, 15807}, {5073, 12174}, {5189, 22115}, {5498, 46265}, {5876, 16659}, {5899, 13171}, {5946, 7540}, {6723, 44900}, {6756, 12006}, {7502, 11550}, {7514, 36990}, {7555, 21243}, {7574, 14157}, {7575, 38729}, {7728, 46440}, {7748, 39524}, {10096, 32237}, {10113, 47096}, {10116, 14449}, {10192, 13371}, {10193, 15331}, {10263, 11264}, {10540, 20125}, {10610, 15559}, {10627, 12134}, {11455, 18564}, {11565, 12241}, {11695, 13163}, {11818, 46264}, {11819, 13630}, {12046, 23411}, {12107, 20299}, {12121, 37944}, {12140, 37931}, {12168, 35452}, {12278, 17800}, {12362, 45958}, {12605, 32137}, {13292, 16982}, {13363, 13490}, {13421, 32358}, {13451, 43573}, {13565, 34002}, {13598, 45970}, {13851, 43893}, {14791, 31383}, {14927, 18420}, {15061, 37940}, {15088, 37942}, {15761, 23324}, {16621, 52073}, {16655, 45959}, {16881, 18128}, {17714, 18381}, {18282, 32767}, {18403, 51548}, {18572, 51403}, {19154, 23327}, {20379, 47342}, {20396, 37897}, {21849, 45969}, {21969, 45730}, {22251, 51393}, {23325, 44278}, {23328, 48368}, {23332, 44213}, {23335, 32171}, {31305, 32140}, {33533, 46448}, {35018, 44862}, {37924, 50435}, {40111, 51360}, {45186, 45731}, {45971, 46850}, {47341, 51425}, {52397, 54042}

X(61299) = pole of line {125, 15026} with respect to the Jerabek hyperbola
X(61299) = pole of line {110, 7525} with respect to the Stammler hyperbola
X(61299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 1503, 1154}, {10263, 34224, 11264}, {10540, 46450, 51391}, {11264, 34224, 45734}, {29012, 44407, 30}


X(61300) = X(51)X(476)∩X(511)X(930)

Barycentrics    a^2*(a^2*b^2*(a^2-b^2)^4-2*a^2*b^2*(a^2-b^2)^2*(a^2+b^2)*c^2+(a^8+2*a^6*b^2+2*a^2*b^6+b^8)*c^4-(a^2+b^2)*(3*a^4+a^2*b^2+3*b^4)*c^6+(3*a^4+4*a^2*b^2+3*b^4)*c^8-(a^2+b^2)*c^10)*(a^10*c^2-b^4*c^2*(b^2-c^2)^3+a^8*(b^4-2*b^2*c^2-4*c^4)+a^6*(-3*b^6+2*b^4*c^2+2*b^2*c^4+6*c^6)+a^4*(3*b^8-4*b^6*c^2+2*b^2*c^6-4*c^8)-a^2*(b-c)*(b+c)*(b^8-3*b^6*c^2+b^4*c^4-b^2*c^6+c^8)) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6029.

X(61300) lies on the circumcircle and these lines: {51, 476}, {98, 1510}, {99, 1154}, {511, 930}, {512, 1141}, {567, 691}, {933, 34397}, {1291, 5012}, {2715, 2965}, {22456, 32002}, {46966, 54034}

X(61300) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(51), X(512)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(567)}}, {{A, B, C, X(249), X(288)}}, {{A, B, C, X(511), X(1510)}}, {{A, B, C, X(1157), X(5012)}}, {{A, B, C, X(2065), X(57639)}}, {{A, B, C, X(14587), X(50946)}} and {{A, B, C, X(51480), X(52179)}}


X(61139)

X(61139) = X(4)X(54)∩X(24)X(125)

Barycentrics    2*a^10-4*a^8*(b^2+c^2)+a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(b^2+c^2)^2+a^2*(b^4-c^4)^2 : :
X(61139) = -3*X[2]+2*X[44829], -3*X[51]+2*X[6146], -2*X[389]+3*X[7576], -3*X[428]+2*X[12241], -3*X[568]+2*X[10116], -3*X[3060]+2*X[10112], -3*X[3830]+2*X[12897], -2*X[5446]+3*X[7540], -4*X[5480]+5*X[52789], -9*X[5946]+8*X[50476], -X[6241]+3*X[18559], -3*X[9730]+4*X[31830], -4*X[10110]+3*X[12022], -5*X[10574]+X[40241], -3*X[11245]+4*X[11745], -2*X[11565]+3*X[13364], -2*X[12605]+3*X[15030], -4*X[13348]+3*X[52397], -2*X[13474]+3*X[16658], -2*X[13488]+3*X[16654], -2*X[13598]+3*X[34603], -2*X[13630]+3*X[38322], -3*X[16194]+2*X[52070], -4*X[16625]+3*X[45968], -4*X[18128]+5*X[37481], -3*X[38321]+2*X[40647], -4*X[43588]+3*X[45730], -4*X[44870]+3*X[52069]

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6016.

X(61139) lies on these lines: {2, 44829}, {3, 2918}, {4, 54}, {5, 1495}, {20, 1352}, {24, 125}, {26, 18474}, {30, 5562}, {32, 51363}, {51, 6146}, {52, 11819}, {64, 67}, {68, 41586}, {74, 52102}, {113, 18377}, {115, 52436}, {143, 45731}, {154, 7507}, {155, 382}, {156, 44288}, {159, 1593}, {182, 7544}, {185, 1503}, {186, 20299}, {235, 13851}, {265, 18378}, {378, 34785}, {389, 7576}, {403, 18383}, {427, 13367}, {428, 12241}, {511, 14516}, {539, 6243}, {542, 5889}, {568, 10116}, {569, 11818}, {1092, 14790}, {1141, 11816}, {1147, 31723}, {1181, 18494}, {1204, 13399}, {1209, 7502}, {1370, 43652}, {1498, 12173}, {1514, 3853}, {1568, 10539}, {1594, 10282}, {1598, 18396}, {1658, 34514}, {1853, 3515}, {1885, 16621}, {1899, 7487}, {2070, 5449}, {2777, 12281}, {2937, 6288}, {2980, 22261}, {3060, 10112}, {3146, 12278}, {3331, 7747}, {3357, 35471}, {3410, 7691}, {3426, 17800}, {3518, 25739}, {3542, 44082}, {3547, 35268}, {3564, 14531}, {3581, 52104}, {3627, 30522}, {3818, 7503}, {3830, 12897}, {5064, 11425}, {5094, 17821}, {5446, 7540}, {5448, 10540}, {5480, 52789}, {5576, 18475}, {5651, 6643}, {5899, 48675}, {5907, 12225}, {5944, 39504}, {5946, 50476}, {6000, 6240}, {6143, 10182}, {6241, 18559}, {6247, 21663}, {6293, 9973}, {6696, 37931}, {6746, 41589}, {6815, 46264}, {6995, 18945}, {7391, 13346}, {7399, 22352}, {7401, 43650}, {7488, 21243}, {7505, 23325}, {7512, 41171}, {7517, 9927}, {7545, 43821}, {7553, 44665}, {7574, 18350}, {7575, 13561}, {7577, 26882}, {7684, 45256}, {7685, 45257}, {7687, 18394}, {7715, 44106}, {7731, 13423}, {8779, 27376}, {9306, 37444}, {9714, 14852}, {9730, 31830}, {9908, 12293}, {10018, 32767}, {10110, 12022}, {10117, 32357}, {10193, 17506}, {10263, 13417}, {10301, 15873}, {10312, 15340}, {10574, 40241}, {10594, 18390}, {10605, 34780}, {10610, 50138}, {10984, 18420}, {10996, 14927}, {11202, 37119}, {11204, 35503}, {11245, 11745}, {11403, 45015}, {11430, 15559}, {11432, 34564}, {11438, 11457}, {11441, 52842}, {11442, 31304}, {11449, 31074}, {11464, 52295}, {11563, 18379}, {11565, 13364}, {11645, 38323}, {12084, 16163}, {12106, 43817}, {12107, 34826}, {12295, 44271}, {12429, 33586}, {12605, 15030}, {13348, 52397}, {13366, 31804}, {13371, 51393}, {13434, 19130}, {13474, 16658}, {13488, 16654}, {13491, 45971}, {13598, 34603}, {13630, 38322}, {14049, 19504}, {14118, 41482}, {14585, 27371}, {15019, 43838}, {15122, 43898}, {15750, 40686}, {15811, 44438}, {16194, 52070}, {16195, 37638}, {16252, 23047}, {16625, 45968}, {17701, 23315}, {18128, 37481}, {18376, 35488}, {18404, 46261}, {18405, 37197}, {18488, 18570}, {18563, 45118}, {18907, 56866}, {19124, 36989}, {19137, 41257}, {19558, 39604}, {20987, 51756}, {21844, 25563}, {22802, 35480}, {22804, 46029}, {23208, 54003}, {23294, 44673}, {23329, 32534}, {23335, 51394}, {24206, 37126}, {26917, 47485}, {26937, 32064}, {26958, 55578}, {29323, 54040}, {31726, 52863}, {32345, 37954}, {34417, 37122}, {34609, 35602}, {34776, 39588}, {37198, 48905}, {37452, 43586}, {38321, 40647}, {38791, 57271}, {43588, 45730}, {43907, 47335}, {44831, 46728}, {44870, 52069}, {51434, 51509}

X(61139) = midpoint of X(i) and X(j) for these {i,j}: {12290, 34797}, {3146, 12278}, {6240, 16659}
X(61086) = reflection of X(i) in X(j) for these {i,j}: {125, 12140}, {185, 3575}, {1885, 16621}, {11381, 16655}, {11750, 5}, {12225, 5907}, {12289, 13403}, {13491, 45971}, {18560, 13474}, {21659, 4}, {3, 45286}, {3574, 32332}, {34224, 389}, {34799, 10112}, {4, 13419}, {44076, 5446}, {45186, 7553}, {45731, 143}, {52, 11819}, {5562, 12134}, {6146, 6756}
X(61139) = anticomplement of X(44829)
X(61086) = X(i)-Dao conjugate of X(j) for these {i, j}: {44829, 44829}
X(61139) = pole of line {23286, 44808} with respect to the circumcircle
X(61139) = pole of line {389, 427} with respect to the Jerabek hyperbola
X(61139) = pole of line {3049, 12077} with respect to the orthic inconic
X(61139) = pole of line {1614, 5562} with respect to the Stammler hyperbola
X(61139) = pole of line {7750, 46724} with respect to the Wallace hyperbola
X(61139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(67), X(38808)}}, {{A, B, C, X(1614), X(5562)}} and {{A, B, C, X(6662), X(8884)}}
X(61139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 12254, 15033}, {4, 12289, 13403}, {4, 1614, 18388}, {4, 19467, 11424}, {4, 26883, 51403}, {4, 31383, 26883}, {4, 6759, 43831}, {4, 8884, 6747}, {4, 9833, 184}, {30, 12134, 5562}, {30, 16655, 11381}, {235, 41362, 13851}, {1092, 14790, 51360}, {1204, 14216, 13399}, {1495, 11572, 5}, {1503, 3575, 185}, {1885, 16621, 32062}, {3060, 34799, 10112}, {6146, 6756, 51}, {6240, 16659, 6000}, {7540, 44076, 5446}, {7553, 44665, 45186}, {10539, 18569, 1568}, {10540, 31724, 5448}, {11442, 31304, 46730}, {12289, 13403, 21659}, {12290, 34797, 2777}, {13289, 44795, 125}, {13403, 18400, 12289}, {13419, 18400, 4}, {14216, 18533, 1204}, {16658, 18560, 13474}, {17845, 36990, 1593}, {18388, 45185, 1614}, {18394, 44958, 7687}, {18400, 32332, 3574}, {37122, 39571, 34417}, {44407, 45286, 3}


Δευτέρα 18 Δεκεμβρίου 2023

X(61083), X(61084)

X(61083) = ISOGONAL CONJUGATE OF X(61084)

Barycentrics    (SB + SC)*(SA*SB - S*Sqrt[SA*SB])*(SA*SC - S*Sqrt[SA*SC]) : :

See Costas Vittas, Antreas Hatzipolakis and Peter Moses, euclid 6066.

X(61083) lies on the cubic K006, the curves Q039 and Q117 and this line: {4, 61084}

X(61083) = isogonal conjugate of X(61084)


X(61084) = ISOGONAL CONJUGATE OF X(61083)

Barycentrics    (SB + SC)*(SA*SB + S*Sqrt[SA*SB])*(SA*SC + S*Sqrt[SA*SC]) : :

See Costas Vittas, Antreas Hatzipolakis and Peter Moses, euclid 6066.

X(61084) lies on the cubic K006, the curves Q039 and Q117 and this line: {4, 61083}

X(61084) = isogonal conjugate of X(61083)


Douglas Hofstadter, FOREWORD

Douglas Hofstadter, FOREWORD In: Clark Kimberling, Triangle Centers and Central Triangles. Congressus Numerantum, vol. 129, August, 1998. W...