Πέμπτη 4 Μαΐου 2023

J. L.BERGGREN


Len Berggren

1.LETTERS

BERGGREN

2. BOOKS


Lennart Berggren; Jonathan & Peter Borwein, Pi: A Source Book. Springer 1997
Lennart Berggren; Jonathan & Peter Borwein, Pi: A Source Book. 2nd ed. Springer 2000
Lennart Berggren; Jonathan & Peter Borwein, Pi: A Source Book. 3rd ed. Springer 2004

**********************


J. L.Berggren and R. S. D. Thomas, Euclid's Phaenomena: A Translation and Study of a Hellenistic Treatise in Spherical Astronomy. Garland Publishing Inc. New York and London 1996.

3. PAPERS

"A coincidence of Pappos' Book VIII with al-Biruni's Tahdid", J. for History of Arabic Science, Vol. II, No. 1, 137-142 (May 1978).
ΨΗΦ. BERGGREN

"Spurious Theorems in Archimedes' Equilibrium of Planes Book I", Archive for History of Exact Sciences, Vol. 16, 2, 87-103 (1976).
ΨΗΦ. BERGGREN

"A Lacuna in Archimedes' Sphere and Cylinder Book I, Historia Mathematica, 4, 1-5 (1977).
ΨΗΦ. BERGGREN
ΨΗΦ. BERGGREN

"History of Greek Mathematics: A Survey of Recent Research", Historia Mathematica, Vol. 11 (1984) 394-410
ΨΗΦ. BERGGREN
ΨΗΦ. BERGGREN ,

Mathematical Methods in Ancient Science: Astronomy" in History in Mathematics Education, ed. Ivor Grattan-Guinness, Belin, Paris 1987, pp. 33-49.
ΨΗΦ. BERGGREN

"Archimedes Among the Ottomans" in From Ancient Omens to Statistical Mechanics. Munksgaard, Copenhagen, 1987, pp. 101-109)
ΨΗΦ. BERGGREN

"Ptolemy's Maps of Earth and the Heavens: A New Interpretation", Archive for History of Exact Sciences, Vol. 43, 2, 1991, pp. 133-144.
ΨΗΦ. BERGGREN

"Mathematical Astronomy in the Fourth Century B.C. as found in Euclid's Phaenomena" (with R.S.D. Thomas, Physis., Vol XXIX (1992), 7-33)
ΨΗΦ. BERGGREN

"The Relation of Greek Spherics to Early Greek Astronomy" in Science and Philosophy in Ancient Greece (ed. Alan C. Bowen), Garland Publishing, 1991, 227-248.
ΨΗΦ. BERGGREN

Mail Antreas P. Hatzipolakis

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point. Denote: 1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp. 1,2,3 are concurrent. ...