Σάββατο 29 Ιανουαρίου 2022
Πέμπτη 27 Ιανουαρίου 2022
TWO POINTS ON THE MCCAY CUBIC
X(mccay1) = (name pending)
Barycentrics (pending)See Antreas Hatzipolakis and César Lozada, euclid 3664.
X(mccay1) lies on the cubics K003, K762, K849, K854 and these lines: { }
X(mccay2) = (name pending)
Barycentrics (pending)See Antreas Hatzipolakis and César Lozada, euclid 4073 and Bernard Gibert, Q175, Q177 .
X(mccay2) lies on the cubic K003, these curves Q018, Q98, Q157, Q175, Q177 and these lines: { }
Εγγραφή σε:
Αναρτήσεις (Atom)
Douglas Hofstadter, FOREWORD
Douglas Hofstadter, FOREWORD In: Clark Kimberling, Triangle Centers and Central Triangles. Congressus Numerantum, vol. 129, August, 1998. W...
-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Thanasis Gakopoulos - Debabrata Nag, Morley Theorem ̶ PLAGIOGONAL Approach of Proof Abstract: In this work, an attempt has been made b...