Τετάρτη 30 Ιανουαρίου 2013
COLLINEAR NPC CENTERS ?
Let ABC be a triangle, L a line passing through H (orthocenter), intersecting the sidelines BC,CA,AB at A',B',C', resp., La,Lb,Lc the reflections of L in the sidelines BC,CA,AB, resp. (concurrent at a point S on the circumcircle) and Ab,Ac the orthogonal projections of A' on Lb,Lc, resp., Bc,Ba the orthogonal projections of B' on Lc,La, resp. and Ca,Cb the orthogonal projections of C' on La,Lb, resp. The NPC centers Na,Nb,Nc of of A'AbAc, B'BcBa, C'CaCb resp. are collinear. (??)
Antreas P. Hatzipolakis, 30 Jan. 2013
Τρίτη 29 Ιανουαρίου 2013
CONICS CENTERED AT O
Let ABC be a triangle and r1,r2,r3 three not equal line segments.
Denote:
a1 = the circle centered at A with radius r1. Similarly ....
a1b2 = the radical axis of the circles a1 and b2. Similarly .....
Six Radical centers:
(a1,b2,c3), (a1,b3,c2), (a2,b3,c1), (a2,b1,c3), (a3,b1,c2), (a3,b2,c1)
Six other points of concurrent radical axes:
(a1b2,b3c1,c2a3), (a1b3,b2c1,c3a2), (a2b3,b1c2,c3a1), (a2b1,b3c2,c1a3), (a3b1,b2c3,c1a2),(a3b2,b1c3,c2a1)
The 12gon has opposite sides parallel and equal. It is inscribed on a conic centered at the circumcenter O = radical center of (a1,b1,c1) and (a2,b2,c2) and (a3,b3,c3)
Antreas P. Hatzipolakis. 29 Jan. 2013
Σάββατο 19 Ιανουαρίου 2013
A MALFATTI - LIKE PROBLEM
Let ABC be a triangle. To draw three circles, each of which is tangent to the other two and to one side of ABC and to the circumcircle of ABC.
Perspective triangles.
Let (Ka), (Kb), (Kc) be the three circles.
(Ka) is tangent to the circumcircle at A', to the BC at A" and to the other two circles (Kb), (Kc) at C*, B*, resp.
(Kb) is tangent to the circumcircle at B', to the CA at B" and to the other two circles (Kc), (Ka) at A*, C*, resp.
(Kc) is tangent to the circumcircle at C', to the AB at C" and to the other two circles (Ka), (Kb) at B*, A*, resp.
The triangles A'B'C', A*B*C* are perspective (??)
Antreas P. Hatzipolakis, 19 Jan. 2013
Τρίτη 15 Ιανουαρίου 2013
ΕΝΑ ΠΡΟΒΛΗΜΑ ΤΟΥ ALEX MYAKISHEV
Έστω ΑΒC ένα οξυγώνιο τρίγωνο και (Ma), (Mb), (Mc) οι τρεις κύκλοι που εφάπτονται εσωτερικά του Κύκλου των Εννέα Σημείων και καθένας δύο πλευρών του τριγώνου (διαφορετικοί απο τον εγγεγραμμένο κύκλο). Τα κέντρα των κύκλων αυτών είναι συγγραμμικά.
Hyacinthos #21396
Να αποδειχθεί συνθετικά, δηλαδή με την Ευκλείδεια Γεωμετρία.
Ο Έλληνας λύτης του προβλήματος θα λάβει ως έπαθλο το τετράτομο έργο ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ (γνωστό ως "Γεωμετρία των Ιησουιτών").
Παρασκευή 11 Ιανουαρίου 2013
ORTH. PROJECTIONS OF MORLEY TRIANGLE VERTICES -2
Let A'B'C' be the Morley 1st Triangle.
Denote
A'b, A'c = the orthogonal projections of A' on CB', BC', resp.
B'c, B'a = the orthogonal projections of B' on AC', CA', resp.
C'a, C'b = the orthogonal projections of C' on BA', AB', resp.
1. A'b,A'c, B'c, B'a, C'a, C'b are con-conic (??).
2. The Euler Lines of A'AbAc, B'B'cB'a, C'C'aC'b are concurrent. (??)
Antreas P. Hatzipolakis, 11 Jan. 2013
ORTH. PROJECTIONS OF MORLEY TRIANGLE VERTICES -1
Let A'B'C' be the Morley 1st Triangle.
Denote
A'b, A'c = the orthogonal projections of A' on AB', AC', resp.
B'c, B'a = the orthogonal projections of B' on BC', BA', resp.
C'a, C'b = the orthogonal projections of C' on CA', CB', resp.
1. A'b,A'c, B'c, B'a, C'a, C'b are concyclic (??).
2. The Euler Lines of A'AbAc, B'B'cB'a, C'C'aC'b are concurrent (??).
Antreas P. Hatzipolakis, 11 jan. 2012
Κυριακή 6 Ιανουαρίου 2013
HOMOTHETIC EQUILATERAL TRIANGLES
Conjecture: The Euler lines of the triangles A'B"C", B'C"A", C'A"B" are concurrent, and also the Euler lines of the triangles A"B'C', B"C'A', C"A'B', if no one of the 6 triangles is degenerated.
A. P. Hatzipolakis, Hyacithos #21357
Πέμπτη 3 Ιανουαρίου 2013
MORLEY TRIANGLES Conjecture
See the discussion in Hyacinthos #21341
Conjecture:
Let A'B'C' be the internal Morley triangle of triangle ABC and A"B"C" the (homothetic) Roussel equilateral triangle(*). The Euler Lines of A'B"C", B'C"A", C'A"B" are concurrent.
Douglas Hofstadter, FOREWORD
Douglas Hofstadter, FOREWORD In: Clark Kimberling, Triangle Centers and Central Triangles. Congressus Numerantum, vol. 129, August, 1998. W...
-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Thanasis Gakopoulos - Debabrata Nag, Morley Theorem ̶ PLAGIOGONAL Approach of Proof Abstract: In this work, an attempt has been made b...