Παρασκευή 10 Φεβρουαρίου 2012

Perspective


Let ABC be a triangle, A'B'C' the orthic triangle, A1B1C1 the cevian triangle of G and A2B2C2 the circumcevian triangle of G with respect A1B1C1.


Denote:

A* = A2O /\ A'N

B* = B2O /\ B'N

C* = C2O /\ C'N

The triangles ABC, A*B*C* are perspective (?)
(perspector on the Euler line?)

Variation:

A** = A2N /\ A'O

B** = B2N /\ B'O

C** = C2N /\ C'O

Are the triangles:

ABC, A**B**C**

A*B*C*, A**B**C**

perspective?

APH, 10 February 2012

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(66603) = X(5)X(1614)∩X(157)X(1656) Barycentrics    -a^14 (b^2 + c^2) + (b^2 - c^2)^6 (b^4 + c^4) + a^12 (5 b^4 + 8 b^2 c^2 + 5 c^4) ...