Let ABC be a triangle and P a point. Let (O1),(O2), (O3) be the reflections of the circumcircle (O) in BC, CA, AB, resp.
Let (O11), (O22), (O33) be the reflections of (O1), (O2), (O3) in AP, BP, CP, resp., L1,L2,L3 the radical axes of [(O22),(O33)], [(O33),(O11)], [(O11), (O22)], resp. and M1,M2,M3 the parallels to L1,L2,L3 through A,B,C resp.
Which is the locus of P such that M1,M2,M3 are concurrent?
APH, 5 December 2011
***********************************
Locus:
(-a - b + c) (a - b + c) (-a + b + c) (a + b + c) (x + y +
z) (-a^4 c^4 x^3 y^2 + a^2 b^2 c^4 x^3 y^2 + 2 a^2 c^6 x^3 y^2 +
b^2 c^6 x^3 y^2 - c^8 x^3 y^2 - a^2 b^2 c^4 x^2 y^3 +
b^4 c^4 x^2 y^3 - a^2 c^6 x^2 y^3 - 2 b^2 c^6 x^2 y^3 +
c^8 x^2 y^3 - a^6 b^2 x^3 y z + 3 a^4 b^4 x^3 y z -
3 a^2 b^6 x^3 y z + b^8 x^3 y z + a^6 c^2 x^3 y z -
b^6 c^2 x^3 y z - 3 a^4 c^4 x^3 y z + 3 a^2 c^6 x^3 y z +
b^2 c^6 x^3 y z - c^8 x^3 y z - a^8 x^2 y^2 z +
2 a^6 b^2 x^2 y^2 z - 2 a^2 b^6 x^2 y^2 z + b^8 x^2 y^2 z +
2 a^6 c^2 x^2 y^2 z - 2 b^6 c^2 x^2 y^2 z - a^4 c^4 x^2 y^2 z +
b^4 c^4 x^2 y^2 z - a^8 x y^3 z + 3 a^6 b^2 x y^3 z -
3 a^4 b^4 x y^3 z + a^2 b^6 x y^3 z + a^6 c^2 x y^3 z -
b^6 c^2 x y^3 z + 3 b^4 c^4 x y^3 z - a^2 c^6 x y^3 z -
3 b^2 c^6 x y^3 z + c^8 x y^3 z + a^4 b^4 x^3 z^2 -
2 a^2 b^6 x^3 z^2 + b^8 x^3 z^2 - a^2 b^4 c^2 x^3 z^2 -
b^6 c^2 x^3 z^2 + a^8 x^2 y z^2 - 2 a^6 b^2 x^2 y z^2 +
a^4 b^4 x^2 y z^2 - 2 a^6 c^2 x^2 y z^2 - b^4 c^4 x^2 y z^2 +
2 a^2 c^6 x^2 y z^2 + 2 b^2 c^6 x^2 y z^2 - c^8 x^2 y z^2 -
a^4 b^4 x y^2 z^2 + 2 a^2 b^6 x y^2 z^2 - b^8 x y^2 z^2 +
2 b^6 c^2 x y^2 z^2 + a^4 c^4 x y^2 z^2 - 2 a^2 c^6 x y^2 z^2 -
2 b^2 c^6 x y^2 z^2 + c^8 x y^2 z^2 - a^8 y^3 z^2 +
2 a^6 b^2 y^3 z^2 - a^4 b^4 y^3 z^2 + a^6 c^2 y^3 z^2 +
a^4 b^2 c^2 y^3 z^2 + a^2 b^6 x^2 z^3 - b^8 x^2 z^3 +
a^2 b^4 c^2 x^2 z^3 + 2 b^6 c^2 x^2 z^3 - b^4 c^4 x^2 z^3 +
a^8 x y z^3 - a^6 b^2 x y z^3 + a^2 b^6 x y z^3 - b^8 x y z^3 -
3 a^6 c^2 x y z^3 + 3 b^6 c^2 x y z^3 + 3 a^4 c^4 x y z^3 -
3 b^4 c^4 x y z^3 - a^2 c^6 x y z^3 + b^2 c^6 x y z^3 +
a^8 y^2 z^3 - a^6 b^2 y^2 z^3 - 2 a^6 c^2 y^2 z^3 -
a^4 b^2 c^2 y^2 z^3 + a^4 c^4 y^2 z^3) (-a^2 c^4 x^4 y^2 +
b^2 c^4 x^4 y^2 + c^6 x^4 y^2 - c^6 x^3 y^3 + a^2 c^4 x^2 y^4 -
b^2 c^4 x^2 y^4 + c^6 x^2 y^4 + a^6 x^4 y z - 2 a^4 b^2 x^4 y z +
a^2 b^4 x^4 y z - 2 a^4 c^2 x^4 y z + 2 b^4 c^2 x^4 y z +
a^2 c^4 x^4 y z + 2 b^2 c^4 x^4 y z + 2 a^6 x^3 y^2 z -
3 a^4 b^2 x^3 y^2 z + b^6 x^3 y^2 z - 4 a^4 c^2 x^3 y^2 z +
4 a^2 b^2 c^2 x^3 y^2 z - 6 b^2 c^4 x^3 y^2 z + 2 c^6 x^3 y^2 z +
a^6 x^2 y^3 z - 3 a^2 b^4 x^2 y^3 z + 2 b^6 x^2 y^3 z +
4 a^2 b^2 c^2 x^2 y^3 z - 4 b^4 c^2 x^2 y^3 z -
6 a^2 c^4 x^2 y^3 z + 2 c^6 x^2 y^3 z + a^4 b^2 x y^4 z -
2 a^2 b^4 x y^4 z + b^6 x y^4 z + 2 a^4 c^2 x y^4 z -
2 b^4 c^2 x y^4 z + 2 a^2 c^4 x y^4 z + b^2 c^4 x y^4 z -
a^2 b^4 x^4 z^2 + b^6 x^4 z^2 + b^4 c^2 x^4 z^2 +
2 a^6 x^3 y z^2 - 4 a^4 b^2 x^3 y z^2 + 2 b^6 x^3 y z^2 -
3 a^4 c^2 x^3 y z^2 + 4 a^2 b^2 c^2 x^3 y z^2 -
6 b^4 c^2 x^3 y z^2 + c^6 x^3 y z^2 + 3 a^6 x^2 y^2 z^2 -
3 a^4 b^2 x^2 y^2 z^2 - 3 a^2 b^4 x^2 y^2 z^2 +
3 b^6 x^2 y^2 z^2 - 3 a^4 c^2 x^2 y^2 z^2 -
6 a^2 b^2 c^2 x^2 y^2 z^2 - 3 b^4 c^2 x^2 y^2 z^2 -
3 a^2 c^4 x^2 y^2 z^2 - 3 b^2 c^4 x^2 y^2 z^2 +
3 c^6 x^2 y^2 z^2 + 2 a^6 x y^3 z^2 - 4 a^2 b^4 x y^3 z^2 +
2 b^6 x y^3 z^2 - 6 a^4 c^2 x y^3 z^2 + 4 a^2 b^2 c^2 x y^3 z^2 -
3 b^4 c^2 x y^3 z^2 + c^6 x y^3 z^2 + a^6 y^4 z^2 -
a^4 b^2 y^4 z^2 + a^4 c^2 y^4 z^2 - b^6 x^3 z^3 + a^6 x^2 y z^3 -
6 a^2 b^4 x^2 y z^3 + 2 b^6 x^2 y z^3 + 4 a^2 b^2 c^2 x^2 y z^3 -
3 a^2 c^4 x^2 y z^3 - 4 b^2 c^4 x^2 y z^3 + 2 c^6 x^2 y z^3 +
2 a^6 x y^2 z^3 - 6 a^4 b^2 x y^2 z^3 + b^6 x y^2 z^3 +
4 a^2 b^2 c^2 x y^2 z^3 - 4 a^2 c^4 x y^2 z^3 -
3 b^2 c^4 x y^2 z^3 + 2 c^6 x y^2 z^3 - a^6 y^3 z^3 +
a^2 b^4 x^2 z^4 + b^6 x^2 z^4 - b^4 c^2 x^2 z^4 +
2 a^4 b^2 x y z^4 + 2 a^2 b^4 x y z^4 + a^4 c^2 x y z^4 +
b^4 c^2 x y z^4 - 2 a^2 c^4 x y z^4 - 2 b^2 c^4 x y z^4 +
c^6 x y z^4 + a^6 y^2 z^4 + a^4 b^2 y^2 z^4 - a^4 c^2 y^2 z^4)
Francisco Javier García Capitán
5 December 2011
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
ETC
X(5459) Let ABC be a triangle, let A', B', C' be the midpoints of BC, CA, AB. Let L_a be the perpendicular through A' ...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
-
X(5459) Let ABC be a triangle, let A', B', C' be the midpoints of BC, CA, AB. Let L_a be the perpendicular through A' ...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου