X(69018) = EULER LINE INTERCEPT OF X(5892)X(61690)
Barycentrics 4*a^10 - 9*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 2*a^6*(b^4 + 14*b^2*c^2 + c^4) - 2*a^2*(b^2 - c^2)^2*(3*b^4 - 2*b^2*c^2 + 3*c^4) + 8*a^4*(b^6 - 4*b^4*c^2 - 4*b^2*c^4 + c^6) : :As a point on the Euler line, X(69018) has Shinagawa coefficients: {1/3 (-8 e + 5 (e + f)), -f}
See Gabi Cuc Cucoanes and David Nguyen, euclid 8571.
X(69018) lies on these lines: {2, 3}, {5892, 61690}, {10821, 39562}, {11202, 64730}, {11245, 63649}, {12099, 38793}, {15045, 59553}, {16226, 65094}, {23329, 35283}, {50979, 66730}, {61507, 64100}
X(69018) = midpoint of X(2) and X(17928)
X(69018) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3524, 7395}, {2, 6815, 5055}, {2, 10304, 6804}, {2, 13160, 15699}, {2, 15078, 67263}, {2, 17928, 30}, {140, 15330, 549}, {547, 549, 44218}, {631, 5020, 47090}
X(69019) = EULER LINE INTERCEPT OF X(373)X(67868)
Barycentrics 3*a^8*(b^2 + c^2) + 16*a^4*b^2*c^2*(b^2 + c^2) - 3*(b^2 - c^2)^4*(b^2 + c^2) + a^6*(-6*b^4 + 4*b^2*c^2 - 6*c^4) + 2*a^2*(b^2 - c^2)^2*(3*b^4 - 10*b^2*c^2 + 3*c^4) : :As a point on the Euler line, X(69019) has Shinagawa coefficients: {1/3 (-5 e + 3 (e + f)), -e + f}
See Gabi Cuc Cucoanes and David Nguyen, euclid 8571.
X(69019) lies on these lines: {2, 3}, {373, 67868}, {12099, 36518}, {15045, 54039}, {15873, 21969}, {18358, 40318}, {47352, 67870}, {61507, 61744}
X(69019) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 381, 62962}, {5, 403, 37439}, {381, 5055, 44441}, {381, 5071, 47097}, {3091, 5020, 10151}, {5066, 10127, 381}
X(69020) = EULER LINE INTERCEPT OF X(567)X(59543)
Barycentrics -a^10 + 3*a^2*(b^2 - c^2)^4 + 3*a^8*(b^2 + c^2) - (b^2 - c^2)^4*(b^2 + c^2) - 2*a^6*(b^4 + 3*b^2*c^2 + c^4) - 2*a^4*(b^6 - 6*b^4*c^2 - 6*b^2*c^4 + c^6) : :As a point on the Euler line, X(69020) has Shinagawa coefficients: {1/3 (-((13 e)/4) + 2 (e + f)), -(e/4)}
See Gabi Cuc Cucoanes and David Nguyen, euclid 8571.
X(69020) lies on these lines: {2, 3}, {567, 59543}, {569, 61681}, {974, 5655}, {3167, 45967}, {3618, 39562}, {5065, 6128}, {9306, 61713}, {10170, 61645}, {11433, 50461}, {14561, 40670}, {14643, 68292}, {15037, 18928}, {15038, 37645}, {15087, 63084}, {18445, 37648}, {18952, 43598}, {23039, 61506}, {29959, 38317}, {31267, 38064}, {32140, 43614}, {36753, 59659}, {37506, 59648}, {38079, 63612}, {40280, 67890}, {55039, 64177}, {59373, 63703}
X(69020) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2, 3091, 65085}, {2, 3545, 18281}, {2, 5055, 14787}, {2, 5071, 60763}, {5, 140, 63664}, {5, 3628, 52296}, {5, 10019, 5072}, {381, 5054, 54992}, {547, 6677, 67263}, {1656, 5020, 2072}, {6642, 16072, 38321}, {14782, 14783, 12086}, {15765, 18585, 11413}, {18586, 18587, 50143}
X(69021) = EULER LINE INTERCEPT OF X(6467)X(51737)
Barycentrics -8*a^10 + 15*a^8*(b^2 + c^2) + (b^2 - c^2)^4*(b^2 + c^2) + 6*a^2*(b^4 - c^4)^2 + 2*a^6*(b^4 - 30*b^2*c^2 + c^4) - 16*a^4*(b^6 - 3*b^4*c^2 - 3*b^2*c^4 + c^6) : :As a point on the Euler line, X(69021) has Shinagawa coefficients: {1/3 (-11 e + 7 (e + f)), 4 e - 3 (e + f)}
See Gabi Cuc Cucoanes and David Nguyen, euclid 8571.
X(69021) lies on these lines: {2, 3}, {6467, 51737}, {19161, 51132}, {23327, 55673}