Τρίτη 12 Νοεμβρίου 2024

REGULAR POLYGONS AND EULER LINES

Let A1A2A3 be an equilateral triangle and Pa point.
Denote:
1, 2, 3 = the Euler lines of PA1A2,PA2A3, PA3A1, resp.
1,2,3 are concurrent.
Hyacinthos 21592

GENERALIZATION
Let A1A2A3...A3k be a regular 3k-gon and P a point.
Denote:
1, 2, 3,.... 3k = the Euler lines of PA1A2, PA2A3, PA3A4,.....PA3kA1, resp.
These triads are concurrent
1, k+1, 2k+1
2, k+2, 2k+2
3, k+3, 2k+3
4, k+4, 2k+4
......
k, 2k, 3k


k = 2 (Regular Hexagon)
1, 3, 5
2, 4, 6

Mail Antreas P. Hatzipolakis

Δευτέρα 11 Νοεμβρίου 2024

X(5159) updated

X(5159) = INVERSE-IN-NINE-POINT-CIRCLE OF X(1368)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - a2)(3b4 + 3c4 - 2a4 + a2b2 + a2c2 - 6b2c2)
Barycentrics    (a^2-b^2-c^2)*(2*a^4-3*(b^2-c^2)^2-a^2*(b^2+c^2)) : :
Barycentrics    SA*(6*SB*SC-SB*SW-SC*SW) : :
X(5159) = 9*X(2)-X(23), 3*X(2)+X(858), 5*X(2)-X(7426), 7*X(2)+X(10989), 3*X(2)+5*X(30745), 6*X(2)-X(37897), 7*X(2)-X(37904), 11*X(2)-3*X(37907), 9*X(2)+X(46517), 5*X(2)+X(47311), 11*X(2)-X(47312), 6*X(2)+X(47315), 9*X(2)-2*X(47316), 3*X(2)+2*X(47629), X(3)+3*X(2072), X(3)-3*X(10257), 2*X(3)-3*X(16976), 3*X(3)+X(18323), 5*X(3)+3*X(18403), 7*X(3)-3*X(44246)

As a point on the Euler line, X(5159) has Shinagawa coefficients (E -5*F, -E - F)

X(5159) = (inverse-in-de-Longchamps-circle of X(22)) = (radical trace of nine-point circle and de-Longchamps circle) = (radical trace of polar circle and de-Longchamps circle) = (reflection of X(23) in de Longchamps line)    (Randy Hutson, August-September, 2013)

For a construction of X(5159), see David Nguyen and Ercole Suppa, euclid 7508.

X(5159) lies on these lines: {1, 47489}, {2, 3}, {6, 47546}, {8, 47533}, {10, 47492}, {39, 47182}, {69, 40920}, {98, 44877}, {114, 16177}, {122, 16188}, {125, 3292}, {126, 38971}, {127, 31655}, {131, 46436}, {141, 8542}, {193, 47463}, {216, 3055}, {230, 3284}, {265, 55981}, {325, 16315}, {339,3266}, {343, 8538}, {373, 37511}, {385, 47237}, {394, 8548}, {511, 6723}, {523, 4885}, {524, 6698}, {525, 22264}, {551, 47491}, {575, 23292}, {576, 13567}, {577, 3054}, {597, 47460}, {599, 47280}, {625,40544}, {647, 47256}, {850, 47248}, {892, 16103}, {895, 15128}, {1007, 2452}, {1038, 7286}, {1040, 5160}, {1092, 61544}, {1125, 51725}, {1154, 64689}, {1351, 37643}, {1352, 59767}, {1353, 26869}, {1503, 5972}, {1514, 36518}, {1531, 38727}, {1560, 52951}, {1568, 38729} ,{1698, 47321}, {1853, 59543}, {1899, 38398}, {1992, 47462}, {2697, 44060}, {2770, 58096}, {3066, 38136}, {3167, 23291}, {3231, 14965}, {3241, 47536}, {3258, 31842}, {3291, 14961}, {3576, 47469}, {3580, 15059}, {3589, 20113}, {3618, 32220}, {3619, 47279}, {3620, 47281}, {3634, 37613}, {3679, 47490}, {3763, 32113}, {3815, 5158}, {3818, 61507}, {4669, 47564}, {5093, 63081}, {5099, 31275}, {5203, 53895}, {5272, 10149}, {5297, 18447}, {5622, 41615}, {5650, 9967}, {5651, 18358}, {5886, 47471}, {6000, 65095}, {6390, 15398}, {6425, 18289}, {6426, 18290}, {6509, 15850}, {6593, 15116}, {6688, 58481}, {6697, 13562}, {6721, 62490}, {6776, 62708}, {7292, 18455}, {7736, 47184}, {7745, 15820}, {7763, 59766}, {7868, 16325}, {7925, 47155}, {7998, 18438}, {8263, 23327}, {8280, 43879}, {8281, 43880}, {8705, 11574}, {8780, 32064}, {8854, 53513}, {8855, 53516}, {9019, 35370}, {9140, 32272}, {9148, 47159}, {9165, 44401}, {9300, 15860}, {9306, 23332}, {9716, 45968}, {9745, 63633}, {9771, 16333}, {9775, 46637}, {9820, 18914}, {9970, 15131}, {10116, 15129},{10173, 11594}, {10192, 64196}, {10256, 46987}, {10415, 34897}, {10510, 47558}, {10516, 47474}, {10564, 23515}, {10634, 43103}, {10635, 43102}, {11059, 41009}, {11245, 11422}, {11427, 53092}, {11433, 11482}, {11477, 26958}, {11513, 32789}, {11514, 32790}, {11580, 22121}, {12041, 58885}, {12079, 14919}, {12358, 40685}, {12900, 14915}, {13202, 20725}, {13292, 15120}, {13445, 15029}, {13561, 31831}, {13611, 65620}, {13754, 16270}, {13857, 41586}, {13869, 30741}, {14156, 15115}, {14341, 41357}, {14389, 51732}, {14561, 47571}, {14984, 60774}, {15025, 50435}, {15027, 22115}, {15034, 25739}, {15066, 61545}, {15124, 50708}, {15125, 15311}, {15139, 15142}, {15448, 29012}, {15471, 32300}, {15491, 16324}, {15526, 22110}, {15533, 47466}, {15812, 47355}, {15819, 47568}, {15905, 62992}, {16092, 39061}, {16227, 64854}, {16303, 31489}, {16310, 44529}, {16313, 50666}, {16760, 34844}, {18583, 37648}, {18911, 61690}, {19126, 32217}, {19131, 22112}, {19862, 51693}, {19875, 47488}, {19883, 47495}, {20190, 58447}, {20208, 37690}, {20299, 59659}, {20582, 47446}, {21243, 53415}, {21356, 47551}, {21358, 47276}, {21639, 53778}, {21850, 61506}, {21968, 64059}, {21970, 51212}, {22104, 34841}, {22151, 32251}, {23878, 47247}, {25055, 47472}, {29181, 32223}, {29639, 47178}, {31174, 46983}, {31274, 47326}, {31277, 47004}, {31279, 47173}, {31804, 64181}, {31843, 46664}, {32111, 64101}, {32227, 34153}, {32269, 51360}, {32411, 63709}, {32767, 64035}, {33522, 55602}, {33924, 47164}, {34128, 51391}, {34988, 44533}, {35259, 39884}, {35707, 58437}, {35968, 42426}, {36900, 47257}, {37638,48876}, {37644, 61624}, {37647, 62698}, {37688, 41008}, {37689, 38292}, {38028, 47476}, {38047, 47506}, {38053, 47507}, {38057, 47508}, {38098, 47534}, {38110, 54012}, {38314, 47493}, {38317, 47581}, {38795, 51425}, {39220, 52058}, {39899, 64177}, {40112, 41724}, {40341, 47465}, {40349, 40350}, {40995, 63098}, {41139, 46998}, {42424, 53832}, {44381, 47239}, {44436, 47213}, {46264, 61680}, {46686, 58871}, {46982, 63440}, {46986, 47245}, {46989, 47254}, {47169, 62196}, {47175, 47259}, {47207, 65760}, {47249, 47261}, {47253, 47442}, {47271 ,54320}, {47352, 47458}, {47447, 63121}, {47451, 51128}, {47456, 52238}, {47461, 51171}, {47494, 53620}, {47499, 47761}, {47500, 47760}, {47537, 51071}, {47541, 59373}, {47544, 48310}, {47575, 59403}, {47576, 59404}, {51358, 59661}, {52520, 63632}, {52987, 61646}, {53777, 62375}, {58451, 58639}, {59399, 63084}, {60414, 60415}, {60420, 60424}, {60421, 60425}, {60422, 60426}, {60423, 60427}

X(5159) = midpoint of X(i) and X(j) for these (i, j): {2, 47097}, {3, 10297}, {5, 15122}, {23, 46517}, {69, 47277}, {125, 11064}, {325, 16315}, {403, 47090}, {427, 16387}, {441, 37987}, {468, 858}, {625, 40544}, {850, 47248}, {892, 16103}, {1529, 46620}, {2071, 10151}, {2072, 10257}, {3153, 37931}, {3679, 47593}, {5189, 37899}, {5196, 47098}, {5203, 53895}, {6390, 51258}, {7426, 47311}, {7575, 47341}, {9148, 47159}, {10295, 47339}, {10510, 47558}, {10989, 37904}, {12041, 58885}, {13202, 20725}, {13473, 16386}, {13857, 44569}, {15115, 15123}, {15118, 19510}, {16188, 47570}, {18323, 47308}, {18572, 47335}, {22110, 46980}, {23323, 34152}, {31174, 46983}, {32269, 51360}, {36170, 56370}, {37897, 47315}, {37900, 47095}, {37911, 47629}, {37938, 44452}, {37950, 47336}, {38971, 54075}, {46686, 58871}, {46982, 63440}, {47091, 47096}, {47092, 62344}, {47280, 47552}, {47310, 54995}, {47312, 47314}, {47612, 47613}
X(5159) = reflection of X(i) in X(j) for these (i, j): (4, 63821), (23, 47316), (403, 44912), (468, 37911), (858, 47629), (10257, 63860), (15471, 32300), (16976, 10257), (32217, 47454), (37897, 468), (37899, 47630), (37910, 37897), (37935, 44452), (37942, 44911), (37984, 5), (41357, 14341), (47004, 47262), (47114, 16976), (47239, 44381), (47261, 47249), (47296, 6723), (47315, 858), (47338, 11799), (47442, 47253), (47457, 3589), (47549, 47460), (51725, 1125), (65154, 6677)
X(5159) = complement of X(468)
X(5159) = inverse-in-nine-point circle of X(1368)
X(5159) = inverse-in-{circumcircle, nine-point circle}-inverter of X(20)
X(5159) = inverse-in-complement-of-polar-circle of X(2)
X(5159) = intersection, other than A, B, C, of circumconics {A, B, C, X(3), X(40349)} and {A, B, C, X(4), X(53419)}
X(5159) = barycentric product X(i)*X(j) for these (i,j): (69, 53419), (76, 21639), (264, 40349), (305, 40350), (525, 53351), (5485, 53778)
X(5159) = barycentric quotient X(i)/X(j) for these {i,j}: {40349, 3}, {40350, 25}, {53351, 648}, {53419, 4}, {53778, 1992}
X(5159) = trilinear product X(i)*X(j) for these (i,j): (63, 53419), (75, 21639), (92, 40349), (304, 40350), (656, 53351), (53778, 55923)
X(5159) = trilinear quotient X(i)/X(j) for these (i,j): (21639, 31), (40349, 48), (40350, 1973), (53351, 162), (53419, 19), (53778, 36277)
X(5159) = (X(i), X(j))-harmonic conjugate of X(k) for these (i, j, k): (2, 20, 52290), (2, 22, 52297), (2, 427, 6677), (2, 468, 37911), (23, 468, 47316), (597, 47549, 47460), (599, 47280, 47552), (3291, 47298, 43291), (3618, 32220, 47459), (5651, 45303, 18358), (10510, 62376, 47558), (24855, 47298, 3291), (26869, 37645, 1353), (30786, 37804, 62310), (37648, 61743, 18583), (37804, 62310, 6390), (51360, 61691, 32269), (59767, 61735, 1352)


Πέμπτη 7 Νοεμβρίου 2024

Κυριακή 3 Νοεμβρίου 2024

X(370)

Created at: Sun, Nov 3, 2024 at 12:26 PM
From: Antreas Hatzipolakis
To: euclid@groups.io, Chris van Tienhoven
Subject: Re: [euclid] Homothetic to Morley

Dear Chris
1. X(5390)
The point X(5390) was listed "coordinates-less"

X(5390) = EULER-MORLEY-ZHAO POINT
Barycentrics (unknown)
Let DEF be the classical Morley triangle. The Euler lines of the three triangles AEF, BFD, CDE appear to concur in a point for which barycentric coordinates remain to be discovered.
Construction by Zhao Yong of Anhui, China, October 2, 2012.

Then you, with your fruitful "fields method", managed to find the trilinears of the point with trigonometric expressions (Hyacinthos 21902)

2. X(370)
Jiang Huanxin proposed in the American Mathematical Monthly the following problem
In triangle ABC find all points P such that the cevian triangle of P is equilateral (my wording)
The problem was solved analytically by David Goering.
(I have scanned the solution and can be found in my blog here CEVIAN TRIANGLES ) Jean-Pierre Ehrmann computed the barycentrics as unique solutions of a system of equations.

I am wondering if the trlinears of the point can be computed with trigonometric expressions, as in the point X(5390) The same for the center of the equilateral triangle in question

Greetings from sunny Athens
APH

***********************

Created at: Sun, Nov 3, 2024 at 11:48 PM
From: Chris van Tienhoven
To: Antreas Hatzipolakis
Subject: RE: Homothetic to Morley

Dear Antreas,

I am not so sure if X(370) is suitable to tackle with Perspective Fields.
In 2010 I corresponded with Francisco about X(370) and in 2012 with Peter Moses.
I had already calculated the coordinates of X(370) and I found there are 3 solutions for the specifications of X(370), two of which can be imaginary. Peter told me there even may be 6 solutions.
He wrote in 2012 to me:
There are 2 sets of 3 solutions, depending on the external Fermat (giving X(370) and a maximum of 2 imaginaries) or internal Fermat (giving 3 reals) construction.
X(370) pertains to the equilateral cevian point that is inside the triangle. Each set of solutions comes from intersecting 3 conics.
As to it being a center .. I think it probably is, but the test is to see if, when symmetrically written, the coordinates remain unchanged under a bicentric exchange. It doesn't necessarily mean that a point is not a center if the coordinates are not symmetric. It may well be possible they can be made so.

See attachment for the one real solution I found in 2012. It is pretty long.
The expression is checked with figures to be correct.
Best regards,
Chris

Chris-solution-X370-in 2012

Mail Antreas P. Hatzipolakis

Σάββατο 2 Νοεμβρίου 2024

CEVIAN TRIANGLES

Jiang Huanxin and David Goering, EquilateralCevian Triangles
The American Mathematical Monthly
Vol. 104, No. 6 (Jun. - Jul., 1997), pp. 567-570
David Goering
X(370) = EQUILATERAL CEVIAN TRIANGLE POINT

Mowaffaq Hajja, The Arbitrariness of the Cevian Triangle
The American Mathematical Monthly
Vol. 113, No. 5 (May, 2006), pp. 443-447
Mowaffaq Hajja

Mail Antreas P. Hatzipolakis

ARCHIVES

Old yahoo group Anopolis Anopolis