Κυριακή 24 Δεκεμβρίου 2023

X(61298) - X(61300)

X(61298) = X(5)X(39494)∩X(1116)X(10224)

Barycentrics    (b-c)*(b+c)*(a^2*b^2*(a^2-b^2)^4*(a^2+b^2)+(a^2-b^2)^2*(a^8-3*a^2*b^6-b^8)*c^2+(-3*a^10+a^8*b^2+6*a^6*b^4-4*a^4*b^6+3*b^10)*c^4+(2*a^8-3*a^6*b^2-4*a^4*b^4-2*b^8)*c^6+(2*a^6+5*a^4*b^2-2*b^6)*c^8-(3*a^4+a^2*b^2-3*b^4)*c^10+(a-b)*(a+b)*c^12) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6029.

X(61298) lies on these lines: {5, 39494}, {1116, 10224}, {1594, 39512}, {10280, 39503}, {11615, 39509}, {18308, 50136}, {32478, 33332}


X(61299) = X(26)X(1853)∩X(30)X(511)

Barycentrics    2*a^10+a^6*(b^2-c^2)^2-4*a^8*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^2*(b^2-c^2)^2*(b^4+3*b^2*c^2+c^4)+a^4*(b^6+2*b^4*c^2+2*b^2*c^4+c^6) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6029.

X(61299) lies on these lines: {4, 13353}, {5, 22352}, {22, 34514}, {23, 15027}, {26, 1853}, {30, 511}, {52, 45732}, {125, 37936}, {140, 13419}, {143, 7553}, {146, 46445}, {154, 31181}, {156, 11206}, {186, 38728}, {265, 37925}, {382, 7592}, {428, 13364}, {546, 44829}, {548, 45286}, {1495, 37938}, {1533, 44283}, {1658, 23329}, {2937, 34826}, {3530, 17712}, {3627, 11750}, {3853, 15807}, {5073, 12174}, {5189, 22115}, {5498, 46265}, {5876, 16659}, {5899, 13171}, {5946, 7540}, {6723, 44900}, {6756, 12006}, {7502, 11550}, {7514, 36990}, {7555, 21243}, {7574, 14157}, {7575, 38729}, {7728, 46440}, {7748, 39524}, {10096, 32237}, {10113, 47096}, {10116, 14449}, {10192, 13371}, {10193, 15331}, {10263, 11264}, {10540, 20125}, {10610, 15559}, {10627, 12134}, {11455, 18564}, {11565, 12241}, {11695, 13163}, {11818, 46264}, {11819, 13630}, {12046, 23411}, {12107, 20299}, {12121, 37944}, {12140, 37931}, {12168, 35452}, {12278, 17800}, {12362, 45958}, {12605, 32137}, {13292, 16982}, {13363, 13490}, {13421, 32358}, {13451, 43573}, {13565, 34002}, {13598, 45970}, {13851, 43893}, {14791, 31383}, {14927, 18420}, {15061, 37940}, {15088, 37942}, {15761, 23324}, {16621, 52073}, {16655, 45959}, {16881, 18128}, {17714, 18381}, {18282, 32767}, {18403, 51548}, {18572, 51403}, {19154, 23327}, {20379, 47342}, {20396, 37897}, {21849, 45969}, {21969, 45730}, {22251, 51393}, {23325, 44278}, {23328, 48368}, {23332, 44213}, {23335, 32171}, {31305, 32140}, {33533, 46448}, {35018, 44862}, {37924, 50435}, {40111, 51360}, {45186, 45731}, {45971, 46850}, {47341, 51425}, {52397, 54042}

X(61299) = pole of line {125, 15026} with respect to the Jerabek hyperbola
X(61299) = pole of line {110, 7525} with respect to the Stammler hyperbola
X(61299) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {30, 1503, 1154}, {10263, 34224, 11264}, {10540, 46450, 51391}, {11264, 34224, 45734}, {29012, 44407, 30}


X(61300) = X(51)X(476)∩X(511)X(930)

Barycentrics    a^2*(a^2*b^2*(a^2-b^2)^4-2*a^2*b^2*(a^2-b^2)^2*(a^2+b^2)*c^2+(a^8+2*a^6*b^2+2*a^2*b^6+b^8)*c^4-(a^2+b^2)*(3*a^4+a^2*b^2+3*b^4)*c^6+(3*a^4+4*a^2*b^2+3*b^4)*c^8-(a^2+b^2)*c^10)*(a^10*c^2-b^4*c^2*(b^2-c^2)^3+a^8*(b^4-2*b^2*c^2-4*c^4)+a^6*(-3*b^6+2*b^4*c^2+2*b^2*c^4+6*c^6)+a^4*(3*b^8-4*b^6*c^2+2*b^2*c^6-4*c^8)-a^2*(b-c)*(b+c)*(b^8-3*b^6*c^2+b^4*c^4-b^2*c^6+c^8)) : :

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6029.

X(61300) lies on the circumcircle and these lines: {51, 476}, {98, 1510}, {99, 1154}, {511, 930}, {512, 1141}, {567, 691}, {933, 34397}, {1291, 5012}, {2715, 2965}, {22456, 32002}, {46966, 54034}

X(61300) = intersection, other than A, B, C, of circumconics, {{A, B, C, X(51), X(512)}}, {{A, B, C, X(74), X(98)}}, {{A, B, C, X(187), X(567)}}, {{A, B, C, X(249), X(288)}}, {{A, B, C, X(511), X(1510)}}, {{A, B, C, X(1157), X(5012)}}, {{A, B, C, X(2065), X(57639)}}, {{A, B, C, X(14587), X(50946)}} and {{A, B, C, X(51480), X(52179)}}


X(61139)

X(61139) = X(4)X(54)∩X(24)X(125)

Barycentrics    2*a^10-4*a^8*(b^2+c^2)+a^4*(b^2-c^2)^2*(b^2+c^2)-(b^2-c^2)^4*(b^2+c^2)+a^6*(b^2+c^2)^2+a^2*(b^4-c^4)^2 : :
X(61139) = -3*X[2]+2*X[44829], -3*X[51]+2*X[6146], -2*X[389]+3*X[7576], -3*X[428]+2*X[12241], -3*X[568]+2*X[10116], -3*X[3060]+2*X[10112], -3*X[3830]+2*X[12897], -2*X[5446]+3*X[7540], -4*X[5480]+5*X[52789], -9*X[5946]+8*X[50476], -X[6241]+3*X[18559], -3*X[9730]+4*X[31830], -4*X[10110]+3*X[12022], -5*X[10574]+X[40241], -3*X[11245]+4*X[11745], -2*X[11565]+3*X[13364], -2*X[12605]+3*X[15030], -4*X[13348]+3*X[52397], -2*X[13474]+3*X[16658], -2*X[13488]+3*X[16654], -2*X[13598]+3*X[34603], -2*X[13630]+3*X[38322], -3*X[16194]+2*X[52070], -4*X[16625]+3*X[45968], -4*X[18128]+5*X[37481], -3*X[38321]+2*X[40647], -4*X[43588]+3*X[45730], -4*X[44870]+3*X[52069]

See Antreas Hatzipolakis and Ivan Pavlov, euclid 6016.

X(61139) lies on these lines: {2, 44829}, {3, 2918}, {4, 54}, {5, 1495}, {20, 1352}, {24, 125}, {26, 18474}, {30, 5562}, {32, 51363}, {51, 6146}, {52, 11819}, {64, 67}, {68, 41586}, {74, 52102}, {113, 18377}, {115, 52436}, {143, 45731}, {154, 7507}, {155, 382}, {156, 44288}, {159, 1593}, {182, 7544}, {185, 1503}, {186, 20299}, {235, 13851}, {265, 18378}, {378, 34785}, {389, 7576}, {403, 18383}, {427, 13367}, {428, 12241}, {511, 14516}, {539, 6243}, {542, 5889}, {568, 10116}, {569, 11818}, {1092, 14790}, {1141, 11816}, {1147, 31723}, {1181, 18494}, {1204, 13399}, {1209, 7502}, {1370, 43652}, {1498, 12173}, {1514, 3853}, {1568, 10539}, {1594, 10282}, {1598, 18396}, {1658, 34514}, {1853, 3515}, {1885, 16621}, {1899, 7487}, {2070, 5449}, {2777, 12281}, {2937, 6288}, {2980, 22261}, {3060, 10112}, {3146, 12278}, {3331, 7747}, {3357, 35471}, {3410, 7691}, {3426, 17800}, {3518, 25739}, {3542, 44082}, {3547, 35268}, {3564, 14531}, {3581, 52104}, {3627, 30522}, {3818, 7503}, {3830, 12897}, {5064, 11425}, {5094, 17821}, {5446, 7540}, {5448, 10540}, {5480, 52789}, {5576, 18475}, {5651, 6643}, {5899, 48675}, {5907, 12225}, {5944, 39504}, {5946, 50476}, {6000, 6240}, {6143, 10182}, {6241, 18559}, {6247, 21663}, {6293, 9973}, {6696, 37931}, {6746, 41589}, {6815, 46264}, {6995, 18945}, {7391, 13346}, {7399, 22352}, {7401, 43650}, {7488, 21243}, {7505, 23325}, {7512, 41171}, {7517, 9927}, {7545, 43821}, {7553, 44665}, {7574, 18350}, {7575, 13561}, {7577, 26882}, {7684, 45256}, {7685, 45257}, {7687, 18394}, {7715, 44106}, {7731, 13423}, {8779, 27376}, {9306, 37444}, {9714, 14852}, {9730, 31830}, {9908, 12293}, {10018, 32767}, {10110, 12022}, {10117, 32357}, {10193, 17506}, {10263, 13417}, {10301, 15873}, {10312, 15340}, {10574, 40241}, {10594, 18390}, {10605, 34780}, {10610, 50138}, {10984, 18420}, {10996, 14927}, {11202, 37119}, {11204, 35503}, {11245, 11745}, {11403, 45015}, {11430, 15559}, {11432, 34564}, {11438, 11457}, {11441, 52842}, {11442, 31304}, {11449, 31074}, {11464, 52295}, {11563, 18379}, {11565, 13364}, {11645, 38323}, {12084, 16163}, {12106, 43817}, {12107, 34826}, {12295, 44271}, {12429, 33586}, {12605, 15030}, {13348, 52397}, {13366, 31804}, {13371, 51393}, {13434, 19130}, {13474, 16658}, {13488, 16654}, {13491, 45971}, {13598, 34603}, {13630, 38322}, {14049, 19504}, {14118, 41482}, {14585, 27371}, {15019, 43838}, {15122, 43898}, {15750, 40686}, {15811, 44438}, {16194, 52070}, {16195, 37638}, {16252, 23047}, {16625, 45968}, {17701, 23315}, {18128, 37481}, {18376, 35488}, {18404, 46261}, {18405, 37197}, {18488, 18570}, {18563, 45118}, {18907, 56866}, {19124, 36989}, {19137, 41257}, {19558, 39604}, {20987, 51756}, {21844, 25563}, {22802, 35480}, {22804, 46029}, {23208, 54003}, {23294, 44673}, {23329, 32534}, {23335, 51394}, {24206, 37126}, {26917, 47485}, {26937, 32064}, {26958, 55578}, {29323, 54040}, {31726, 52863}, {32345, 37954}, {34417, 37122}, {34609, 35602}, {34776, 39588}, {37198, 48905}, {37452, 43586}, {38321, 40647}, {38791, 57271}, {43588, 45730}, {43907, 47335}, {44831, 46728}, {44870, 52069}, {51434, 51509}

X(61139) = midpoint of X(i) and X(j) for these {i,j}: {12290, 34797}, {3146, 12278}, {6240, 16659}
X(61086) = reflection of X(i) in X(j) for these {i,j}: {125, 12140}, {185, 3575}, {1885, 16621}, {11381, 16655}, {11750, 5}, {12225, 5907}, {12289, 13403}, {13491, 45971}, {18560, 13474}, {21659, 4}, {3, 45286}, {3574, 32332}, {34224, 389}, {34799, 10112}, {4, 13419}, {44076, 5446}, {45186, 7553}, {45731, 143}, {52, 11819}, {5562, 12134}, {6146, 6756}
X(61139) = anticomplement of X(44829)
X(61086) = X(i)-Dao conjugate of X(j) for these {i, j}: {44829, 44829}
X(61139) = pole of line {23286, 44808} with respect to the circumcircle
X(61139) = pole of line {389, 427} with respect to the Jerabek hyperbola
X(61139) = pole of line {3049, 12077} with respect to the orthic inconic
X(61139) = pole of line {1614, 5562} with respect to the Stammler hyperbola
X(61139) = pole of line {7750, 46724} with respect to the Wallace hyperbola
X(61139) = intersection, other than A, B, C, of circumconics {{A, B, C, X(67), X(38808)}}, {{A, B, C, X(1614), X(5562)}} and {{A, B, C, X(6662), X(8884)}}
X(61139) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 12254, 15033}, {4, 12289, 13403}, {4, 1614, 18388}, {4, 19467, 11424}, {4, 26883, 51403}, {4, 31383, 26883}, {4, 6759, 43831}, {4, 8884, 6747}, {4, 9833, 184}, {30, 12134, 5562}, {30, 16655, 11381}, {235, 41362, 13851}, {1092, 14790, 51360}, {1204, 14216, 13399}, {1495, 11572, 5}, {1503, 3575, 185}, {1885, 16621, 32062}, {3060, 34799, 10112}, {6146, 6756, 51}, {6240, 16659, 6000}, {7540, 44076, 5446}, {7553, 44665, 45186}, {10539, 18569, 1568}, {10540, 31724, 5448}, {11442, 31304, 46730}, {12289, 13403, 21659}, {12290, 34797, 2777}, {13289, 44795, 125}, {13403, 18400, 12289}, {13419, 18400, 4}, {14216, 18533, 1204}, {16658, 18560, 13474}, {17845, 36990, 1593}, {18388, 45185, 1614}, {18394, 44958, 7687}, {18400, 32332, 3574}, {37122, 39571, 34417}, {44407, 45286, 3}


Δευτέρα 18 Δεκεμβρίου 2023

X(61083), X(61084)

X(61083) = ISOGONAL CONJUGATE OF X(61084)

Barycentrics    (SB + SC)*(SA*SB - S*Sqrt[SA*SB])*(SA*SC - S*Sqrt[SA*SC]) : :

See Costas Vittas, Antreas Hatzipolakis and Peter Moses, euclid 6066.

X(61083) lies on the cubic K006, the curves Q039 and Q117 and this line: {4, 61084}

X(61083) = isogonal conjugate of X(61084)


X(61084) = ISOGONAL CONJUGATE OF X(61083)

Barycentrics    (SB + SC)*(SA*SB + S*Sqrt[SA*SB])*(SA*SC + S*Sqrt[SA*SC]) : :

See Costas Vittas, Antreas Hatzipolakis and Peter Moses, euclid 6066.

X(61084) lies on the cubic K006, the curves Q039 and Q117 and this line: {4, 61083}

X(61084) = isogonal conjugate of X(61083)


Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...