Δευτέρα 3 Απριλίου 2023

TRIBONACCI

 

MY_OLD_NOTEBOOK

ENGLISH_TRANSLATION

MY_POST_TO_HYACINTHOS
 

On Sun, 19 Nov 2000 I wrote:
 

>
> /
> angle w / angle q
> /
> / I_0
> J_0 /
> / I_1
> J_1 / I_2
>--------------------------/-----------------------------
>
>(I_0, r_0), (I_1, r_1), (I_2,r_2),...... is a decreasing sequence of circles
>inscribed in the angle q, and (I_n) touches externally both (I_n-1, I_n+1)
>
>(J_0, R_0), (J_1,R_1), .... is a similar sequence but in the angle w(omega)
>
>Now, if R_0 = r_0, and R_1 = r_2, find the angles.
 

Here is the solution:

We have:
1 - sin(q/2) 1 - sin(w/2)
r_n = r_0 *(-------------)^n, R_n = R_0 * (------------)^n
1 + sin(q/2) 1 + sin(w/2)

If r_0 = R_0, r_2 = R_1 we get:

1 - sin(q/2) (1 - sin(w/2)
(------------)^2 = ------------- (1)
1+ sin(q/2) (1 + sin(w/2)

q + w = Pi ==> sin(w/2) = cos(q/2) := a & cos(w/2) = sin(q/2) := b

a, b in (0,1)

1 - b 1 - a 2b
(1) ==> (-------) ^ 2 = ------- ==> a = -------- (2)
1 + b 1 + a 1 + b^2

We have: a^2 + b^2 = 1 (3)

(2) and (3) ==> b^6 + b^4 + 3b^2 - 1 = 0 ==>

(b^3 + b^2 + b - 1)(b^3 - b^2 + b + 1) = 0

and since 0 < b < 1, ==> b^3 + b^2 + b - 1 = 0

The acceptable root of this equation is that one in (0,1).

This root is 0.5436890126........, a well-known constant, namely:

T_n
lim --------
n -->+oo T_(n+1)

where T_n is the Tribonacci sequence: 0,1,1,2,4,7,13,24,44,81,149,274,504,...
(T_1 = 0, T_1 = 1, T_2 = 1, T_(n+2) = T_n + T_(n+1) + T_(n+2))

cos(w/2) = b ==> w = 114d 7' 47",13....

Steven Finch, in his page "Cubic Variations of the Golden Mean" at:

http://www.mathsoft.com/asolve/constant/gold/cubic.html

T_(n+1)
asks about 1/b = lim --------- = 1.839286.... :
n --> +oo T_n

<quote>
[T]he ratio A/B is 1.8392867552.... Are other geometric interpretations
of this constant possible?
</quote>

Welll... the above is one!

Other references for Tribonacci Constant:

Simon Plouffe's page, containing 2000 digits of Tribonacci constant
http://plouffe.fr/simon/constants/tribo.txt

Brian Hayes: Computing Science. The Vibonacci Numbers
American Scientist July-August, Volume 87, No. 4


Antreas

 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...