Παρασκευή 6 Δεκεμβρίου 2013

CONCURRENT EULER LINES

Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.

Denote:

A1, Ab, Ac = the midpoints of A'P, A'B, A'C, resp.

B2, Bc, Ba = the midpoints of B'P, B'C, B'A, resp.

C3, Ca, Cb = the midpoints of C'P, C'A, C'B, resp.

For P = O the Euler lines of the triangles A1AbAc, B2BcBa, C3CaCb are concurrent (trivial case)

How about for P = I ??

In general, which is the locus of P such that the Euler lines of the triangles A1AbAc, B2BcBa, C3CaCb are concurrent?

Antreas P. Hatzipolakis, 5 Dec. 2013, Anopolis #1143

********************************************

The locus is a degree-7 circum-excentral-curve which passes through ETC-centers I, O and X(1138)=Isogonal conjugate of X(399)

1) For P=X(3)=O, point of concurrence is Z=O

2) For P=X(1138), Z=X(30)

3) For P=X(1)=I

Z = (2*a^4-2*(b+c)*a^3-(3*b^2+4*b*c+3*c^2)*a^2+2*(c^2-3*b*c+b^2)*(b+c)*a+(b^2-c^2)^2)/a : : (Trilinears)

= midpoint of: (1,442), (21,3649)

= on lines (1,442), (7,21), (30,551), (78,3826), (79,5426), (191,3338), (497,2475), (758,942), (950,3838), (958,3487), (962,4428), (1387,3636), (2646,5249), (3035,3812), (3651,5603), (3671,4640), (3897,5434)

= [2.022889134016317502091, 1.585022278218526006039, 1.609700227440945328741]

César Lozada, 6 Dec. 2013, Anopolis #1144

X(11281)

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...