Let P be a point, 1,2,3,4 four lines passing through P and 0 a line intersecting the four lines at four distinct and real points (ie not passing through P and not parallel to some one of the four lines)
Denote:
r_ij := the inradius of the triangle bounded by the lines (0,i,j)
THEOREM
1/r_14 =
[(1/(r_12*r_24)) - (1/(r_13*r_34))] /
[((1/r_12) + (1/r_24)) - ((1/r_13) + (1/r_34))]
Simple application of the altitude formula found HERE.
Exercise for the reader:
Find the formula of the r_23
Σάββατο 25 Δεκεμβρίου 2010
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
ETC
X(69262) = EULER LINE INTERCEPT OF X(51)X(53415) Barycentrics 2 a^6-a^4 b^2-2 a^2 b^4+b^6-a^4 c^2+12 a^2 b^2 c^2-b^4 c^2-2 a^2 c^4-b^...
-
Let ABC be a trangle and D1, D2, D3 the feet of the internal angle bisectors [D1D2D3 = the cevian triangle of the incenter I] Prove that th...
-
Created at: Sun, Nov 3, 2024 at 12:26 PM From: Antreas Hatzipolakis To: euclid@groups.io, Chris van Tienhoven Subject: Re: [euclid] Homot...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου