Κυριακή 29 Δεκεμβρίου 2024

ETC

X(66896) = X(3)X(6048)∩X(264)X(40800)

Barycentrics    a^6*(b^2 - c^2)^2*(a^2 - b^2 - c^2)^5 : :

See Antreas Hatzipolakis, Jeremy Tran and Peter Moses, euclid 7726.

X(66896) lies on these lines: {3, 648}, {264, 40800}, {418, 44110}, {577, 52177}, {1093, 13855}, {2660, 22341}, {2972, 46093}, {3269, 41212}, {8754, 35236}, {20975, 47409}, {22052, 42556}, {28783, 52439}, {34980, 35071}, {36748, 57012}

X(66896) = isogonal conjugate of the polar conjugate of X(35071)
X(66896) = X(i)-Ceva conjugate of X(j) for these (i,j): {3, 32320}, {13855, 647}, {28783, 3049}, {40800, 520}
X(66896) = X(i)-isoconjugate of X(j) for these (i,j): {19, 57556}, {92, 34538}, {264, 24021}, {823, 15352}, {1093, 23999}, {1969, 23590}, {6521, 23582}, {6528, 36126}, {6529, 57973}, {18022, 24022}, {32230, 57806}
X(66896) = X(i)-Dao conjugate of X(j) for these (i,j): {6, 57556}, {520, 264}, {17434, 18027}, {22391, 34538}, {46093, 6528}, {58305, 61378} .
X(66896) = crosspoint of X(i) and X(j) for these (i,j): {3, 32320}, {54114, 62428}
X(66896) = crosssum of X(i) and X(j) for these (i,j): {4, 15352}, {32445, 52604}
X(66896) = crossdifference of every pair of points on line {2404, 15352}
X(66896) = barycentric product X(i)*X(j) for these {i,j}: {3, 35071}, {63, 42080}, {97, 41219}, {112, 23103}, {219, 1363}, {222, 7065}, {228, 16730}, {255, 37754}, {339, 36433}, {394, 34980}, {520, 32320}, {577, 2972}, {648, 23613}, {1092, 3269}, {2632, 4100}, {4143, 58310}, {9247, 24020}, {14379, 47409}, {14575, 23974}, {15526, 23606}, {39201, 52613}
X(66896) = barycentric quotient X(i)/X(j) for these {i,j}: {3, 57556}, {184, 34538}, {1363, 331}, {2972, 18027}, {4100, 23999}, {7065, 7017}, {9247, 24021}, {14575, 23590}, {14585, 32230}, {16730, 57796}, {23103, 3267}, {23216, 36434}, {23286, 42401}, {23606, 23582}, {23613, 525}, {23974, 44161}, {32320, 6528}, {34980, 2052}, {35071, 264}, {36433, 250}, {37754, 57806}, {39201, 15352}, {40373, 23975}, {41219, 324}, {42080, 92}, {46088, 52779}, {58305, 65183}, {58310, 6529}, {62428, 42369}
X(66896) = {X(34980),X(35071)}-harmonic conjugate of X(41219)


X(66897) = X(5)X(648)∩X(418)X(51447)

Barycentrics    (b^2 - c^2)^2*(-a^2 + b^2 + c^2)^2*(-(a^2*b^2) + b^4 - a^2*c^2 - 2*b^2*c^2 + c^4)^3 : :

See Antreas Hatzipolakis, Jeremy Tran and Peter Moses, euclid 7726.

X(66897) lies on these lines: {5, 648}, {418, 51477}, {8884, 33664}, {24862, 39019}

X(66897) = X(i)-Ceva conjugate of X(j) for these (i,j): {5, 57195}, {33664, 12077}
X(66897) = X(2148)-isoconjugate of X(57573)
X(66897) = X(i)-Dao conjugate of X(j) for these (i,j): {216, 57573}, {6368, 95}, {39019, 52939}, {64773, 57844}
X(66897) = crosspoint of X(5) and X(57195)
X(66897) = barycentric product X(i)*X(j) for these {i,j}: {5, 39019}, {324, 41212}, {343, 24862}, {6368, 57195}, {15526, 23607}, {18314, 34983}, {35442, 36412}
X(66897) = barycentric quotient X(i)/X(j) for these {i,j}: {5, 57573}, {6368, 52939}, {23607, 23582}, {24862, 275}, {34983, 18315}, {39019, 95}, {41212, 97}, {46394, 14587}, {57195, 18831}
X(66897) = {X(24862),X(39019)}-harmonic conjugate of X(41212)


X(66898) = X(21)X(648)∩X(283)X(296)

Barycentrics    a^3*(a + b)*(a - b - c)^3*(b - c)^2*(a + c)*(a^2 - b^2 - c^2)^2 : :

See Antreas Hatzipolakis, Jeremy Tran and Peter Moses, euclid 7726.

X(66898) lies on these lines: {21, 648}, {283, 296}, {1364, 61054}, {2193, 65375}, {3270, 35072}, {18191, 35014}, {62736, 62756}

X(66898) = X(i)-Ceva conjugate of X(j) for these (i,j): {21, 23090}, {283, 36054}
X(66898) = X(i)-isoconjugate of X(j) for these (i,j): {65, 24032}, {225, 55346}, {226, 23984}, {349, 23985}, {653, 52607}, {1020, 54240}, {1400, 57538}, {1441, 24033}, {4566, 36127}, {7128, 40149}, {32714, 65207}, {36118, 61178}, {52938, 53321}, {59151, 66299}
X(66898) = X(i)-Dao conjugate of X(j) for these (i,j): {521, 1441}, {656, 57809}, {3239, 52575}, {40582, 57538}, {40602, 24032}, {55068, 52938}
X(66898) = crosspoint of X(21) and X(23090)
X(66898) = crosssum of X(65) and X(52607)
X(66898) = barycentric product X(i)*X(j) for these {i,j}: {21, 35072}, {55, 16731}, {112, 58253}, {283, 34591}, {284, 24031}, {314, 39687}, {333, 2638}, {521, 23090}, {648, 23614}, {652, 57081}, {905, 58338}, {1021, 57241}, {1364, 2287}, {1792, 7117}, {1802, 17219}, {1812, 3270}, {1946, 15411}, {2193, 2968}, {2194, 23983}, {2310, 6514}, {2327, 7004}, {3737, 57057}, {4081, 18604}, {4091, 58329}, {4560, 58340}, {6332, 57134}, {7253, 36054}, {15526, 23609}, {23189, 57055}
X(66898) = barycentric quotient X(i)/X(j) for these {i,j}: {21, 57538}, {284, 24032}, {1021, 52938}, {1364, 1446}, {1946, 52607}, {2193, 55346}, {2194, 23984}, {2638, 226}, {2968, 52575}, {3270, 40149}, {16731, 6063}, {18604, 59457}, {21789, 54240}, {23090, 18026}, {23189, 13149}, {23609, 23582}, {23614, 525}, {24031, 349}, {34591, 57809}, {35072, 1441}, {36054, 4566}, {39687, 65}, {57081, 46404}, {57108, 65207}, {57134, 653}, {57657, 24033}, {58253, 3267}, {58338, 6335}, {58340, 4552}, {61054, 1427}, {65102, 61178}


X(66899) = X(30)X(648)∩X(122)X(125)

Barycentrics    (b^2 - c^2)^2*(-a^2 + b^2 + c^2)^2*(-2*a^4 + a^2*b^2 + b^4 + a^2*c^2 - 2*b^2*c^2 + c^4)^3 : :
X(66899) = X[648] - 3 X[16075], 3 X[1650] - 2 X[15526], 3 X[1651] - 4 X[23583], 3 X[11050] - X[39352]

See Antreas Hatzipolakis, Jeremy Tran and Peter Moses, euclid 7726.

X(66899) lies on these lines: {30, 648}, {122, 125}, {1494, 56371}, {1651, 23583}, {3081, 3163}, {9530, 46472}, {11050, 39352}

X(66899) = reflection of X(i) in X(j) for these {i,j}: {1494, 56371}, {3081, 3163}
X(66899) = tripolar centroid of X(14401)
X(66899) = X(i)-Ceva conjugate of X(j) for these (i,j): {30, 14401}, {1650, 39008}, {20123, 1636}, {34297, 1637}
X(66899) = X(i)-isoconjugate of X(j) for these (i,j): {2159, 57570}, {24000, 59145}, {34568, 65263}
X(66899) = X(i)-Dao conjugate of X(j) for these (i,j): {30, 42308}, {1650, 16077}, {3163, 57570}, {9033, 1494}, {14401, 31621}, {62685, 9410}
X(66899) = crosspoint of X(i) and X(j) for these (i,j): {30, 14401}, {1650, 39008}, {3163, 9033}, {34767, 46270}
X(66899) = crosssum of X(i) and X(j) for these (i,j): {74, 34568}, {1304, 40384}, {9412, 23347}
X(66899) = crossdifference of every pair of points on line {112, 34568}
X(66899) = barycentric product X(i)*X(j) for these {i,j}: {30, 39008}, {112, 58257}, {1636, 58263}, {1650, 3163}, {3081, 15526}, {3269, 23097}, {9033, 14401}, {9409, 52624}, {41077, 58346}, {41079, 58345}
X(66899) = barycentric quotient X(i)/X(j) for these {i,j}: {30, 57570}, {1650, 31621}, {3081, 23582}, {3163, 42308}, {3269, 59145}, {9409, 34568}, {14401, 16077}, {39008, 1494}, {58257, 3267}, {58344, 32695}, {58345, 44769}, {58346, 15459}


X(66900) = X(25)X(648)∩X(669)X(47430)

Barycentrics    a^6*(b^2 - c^2)^2*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2) : :

See Antreas Hatzipolakis, Jeremy Tran and Peter Moses, euclid 7726.

X(66900) lies on these lines: {25, 648}, {669, 47430}, {865, 15526}, {1084, 23216}, {1974, 9468}, {2971, 51906}, {3964, 15369}, {19626, 44162}, {27369, 35007}, {40525, 42067}

X(66900) = isogonal conjugate of the isotomic conjugate of X(42068)
X(66900) = polar conjugate of the isotomic conjugate of X(9427)
X(66900) = X(i)-Ceva conjugate of X(j) for these (i,j): {25, 57204}, {15369, 3049}, {42068, 9427}
X(66900) = X(i)-isoconjugate of X(j) for these (i,j): {63, 44168}, {304, 34537}, {305, 24037}, {561, 47389}, {670, 55202}, {799, 52608}, {1101, 40360}, {1502, 62719}, {4563, 4602}, {4590, 40364}, {4592, 4609}, {24041, 40050}, {55205, 62534}
X(66900) = X(i)-Dao conjugate of X(j) for these (i,j): {512, 305}, {523, 40360}, {3005, 40050}, {3162, 44168}, {5139, 4609}, {38996, 52608}, {40368, 47389}
X(66900) = crosspoint of X(25) and X(57204)
X(66900) = crosssum of X(69) and X(52608)
X(66900) = crossdifference of every pair of points on line {52608, 65171}
X(66900) = barycentric product X(i)*X(j) for these {i,j}: {4, 9427}, {6, 42068}, {19, 4117}, {25, 1084}, {28, 52065}, {32, 2971}, {112, 23099}, {115, 44162}, {393, 23216}, {512, 57204}, {607, 1356}, {608, 7063}, {648, 23610}, {669, 2489}, {1501, 8754}, {1974, 3124}, {2207, 65751}, {2211, 15630}, {2501, 9426}, {2970, 9233}, {7109, 42067}, {8739, 41993}, {8740, 41994}, {20975, 36417}, {22260, 61206}, {27369, 51906}, {57260, 58260}, {61361, 62524}
X(66900) = barycentric quotient X(i)/X(j) for these {i,j}: {25, 44168}, {115, 40360}, {669, 52608}, {1084, 305}, {1356, 57918}, {1501, 47389}, {1917, 62719}, {1924, 55202}, {1974, 34537}, {2489, 4609}, {2970, 40359}, {2971, 1502}, {3124, 40050}, {4117, 304}, {7063, 57919}, {8754, 40362}, {9426, 4563}, {9427, 69}, {23099, 3267}, {23216, 3926}, {23610, 525}, {42068, 76}, {44162, 4590}, {52065, 20336}, {57204, 670}


JOHN H. CONWAY Papers

Bibliography of John H. Conway.

ARTICLES AND PAPERS

M.R. Boothroyd and John H. Conway, Problems Drive, 1959. Eureka 22 (October 1959) 15-17. (Solutions: 22-23).
EUREKA

John H. Conway and M.J.T. Guy, Π in four 4’s. Eureka 25 (October 1962) 18-19.
EUREKA

John H. Conway, Tomorrow is the Day After Doomsday. Eureka 36 (October 1973) 28-31.
EUREKA

John H. Conway, The Hunting of J4. Eureka 41 (Summer 1981), 46-54.
EUREKA

John H. Conway, The Weird and Wonderful Chemistry of Audioactive Decay. Eureka 46 (January 1986) 5-18.
EUREKA

John H. Conway, Forewod. In: G. Polya, How to solve it. A new aspect of mathematical method. Expanded version of the 1988 edition, with a new foreword by John H. Conway. Princeton Science Library. Princeton University Press, Princeton, NJ, 2004, p. xix-xxiv.
POLYA

John Conway, The Power of Mathematics. In: Alan Blackwell and David MacKay (Editors), Power (Darwin College Lectures, Series Number 16). Cambridge University Press 2006, pp 36-50
John Conway

Conway J, Ryba A. The Steiner-Lehmus angle-bisector theorem. The Mathematical Gazette. 2014;98(542):193-203. doi:10.1017/S0025557200001236
Conway-Ryba-Lehmus

Buchanan, A.G., Conway, J.H. (2017). An Island Tale for Young Anthropologists. In: Fitting, M., Rayman, B. (eds) Raymond Smullyan on Self Reference. Outstanding Contributions to Logic, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-68732-2_10
Buchanan-Conway

ETC pm

X(66901) = X(2) OF THE CEVIAN TRIANGLE OF X(290) Barycentrics    a^2*(a^2*b^2 - b^4 + a^2*c^2 - c^4)*(a^8*b^4 - 2*a^6*b^6 + a^4*b^8 - 2*a...