Τρίτη 23 Απριλίου 2013

PERSPECTIVE

Let ABC be a triangle, A'B'C' the antipedal triangle of P = O and Oa, Ob, Oc the circumcenters of OB'C', OC'A', OA'B'. resp.

Denote:

Ab = ObOa /\ OcA

Ac = OcOa /\ ObA

Bc = OcOb /\ OaB

Ba = OaOb /\ OcB

Ca = OaOc /\ ObC

Cb = ObOc /\ OaC

The triangles OaObOc, Triangle A*B*C* bounded by (AbAc, BcBa, CaCb) are perspective (??).

Locus of P ??

Antreas P. Hatzipolakis, Anopolis #156

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69262) = EULER LINE INTERCEPT OF X(51)X(53415) Barycentrics    2 a^6-a^4 b^2-2 a^2 b^4+b^6-a^4 c^2+12 a^2 b^2 c^2-b^4 c^2-2 a^2 c^4-b^...