Παρασκευή 10 Φεβρουαρίου 2012

Perspective


Let ABC be a triangle, A'B'C' the orthic triangle, A1B1C1 the cevian triangle of G and A2B2C2 the circumcevian triangle of G with respect A1B1C1.


Denote:

A* = A2O /\ A'N

B* = B2O /\ B'N

C* = C2O /\ C'N

The triangles ABC, A*B*C* are perspective (?)
(perspector on the Euler line?)

Variation:

A** = A2N /\ A'O

B** = B2N /\ B'O

C** = C2N /\ C'O

Are the triangles:

ABC, A**B**C**

A*B*C*, A**B**C**

perspective?

APH, 10 February 2012

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69262) = EULER LINE INTERCEPT OF X(51)X(53415) Barycentrics    2 a^6-a^4 b^2-2 a^2 b^4+b^6-a^4 c^2+12 a^2 b^2 c^2-b^4 c^2-2 a^2 c^4-b^...