Παρασκευή 9 Δεκεμβρίου 2011

LOCUS


Generalization of Hyacinthos Message 10485


Let ABC be a triangle Q1, Q2 two fixed points and P a variable point. Let L1,L2,L3 be the parallels through P to AQ2, BQ2, CQ2, respectively.

Ab := L2 /\ (Parallel to BQ1 through A)
Ac := L3 /\ (Parallel to CQ1 through A)

Similarly:

Bc := L3 /\ (Parallel to CQ1 through B)
Ba := L1 /\ (Parallel to AQ1 through B)

Ca := L1 /\ (Parallel to AQ1 through C)
Cb := L2 /\ (Parallel to BQ1 through C)

Which is the locus of P such that the Euler Lines of AAbAc, BBcBa, CCaCb are concurrent?

APH, 9 December 2011

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

ETC

X(69262) = EULER LINE INTERCEPT OF X(51)X(53415) Barycentrics    2 a^6-a^4 b^2-2 a^2 b^4+b^6-a^4 c^2+12 a^2 b^2 c^2-b^4 c^2-2 a^2 c^4-b^...